Subscribe to RSS
DOI: 10.1055/s-0037-1610380
Electrochemical/Photochemical Aminations Based on Oxidative Cross-Coupling between C–H and N–H
This work was supported by the National Natural Science Foundation of China (21390402, 21520102003, 21272180) and the Natural Science Foundation of Hubei Province (2017CFA010, 2016CFB571). The Program of Introducing Talents of Discipline to Universities of China (111 Program) is also appreciated.Publication History
Received: 16 October 2018
Accepted: 18 October 2018
Publication Date:
15 November 2018 (online)
Dedicated to Professor Xiyan Lu on the occasion of his 90th birthday
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
The construction of nitrogen-containing molecules remains at the cutting edge of organic synthesis because of its wide application in various areas. Instead of prefunctionalized substrates, using free C–H and N–H bonds in the starting materials can supply a more sustainable avenue to the C–N bond-forming reactions. Compared with the well-developed transition-metal-catalyzed protocols, the strategy of introducing optical or electrical energy into reactions is fantastic and appealing. As a result, visible light or electricity mediated amination transformations have continued to develop over the past several years. In this short review, recent progress of carbon–nitrogen bond-forming reactions based on the oxidative cross coupling between C(sp2, sp3)–H and N–H are summarized.
1 Introduction
2 C(sp2)–H/N–H Oxidative Cross Coupling
2.1 Aryl C(sp2)–H as C Nucleophiles
2.1.1 Azoles as N Nucleophiles
2.1.2 Sulfonamides or Sulfonimides as N Nucleophiles
2.1.3 NH3 as N Nucleophile
2.1.4 Morpholine as N Nucleophile
2.1.5 Diaryl Amines as N Nucleophiles
2.1.6 Primary Amines as N Nucleophiles
2.1.7 Imides as N Nucleophiles
2.1.8 Imines as N Nucleophiles
2.2 Alkenyl C(sp2)–H as C Nucleophiles
2.3 Aldehydic C(sp2)–H as C Nucleophiles
3 C(sp3)–H/N–H Oxidative Cross Coupling
3.1 Benzylic C(sp3)–H as C Nucleophiles
3.2 α-C(sp3)–H as C Nucleophiles
4 Conclusions and Outlook
-
References
- 1a Heravi MM, Kheilkordi Z, Zadsirjan V, Heydari M, Malmir M. J. Organomet. Chem. 2018; 861: 17
- 1b Ma X, Liu F, Mo D. Youji Huaxue 2017; 37: 1069
- 1c Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 1d Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
- 1e Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
- 2a Zhao Y, Wang H, Hou X, Hu Y, Lei A, Zhang H, Zhu L. J. Am. Chem. Soc. 2006; 128: 15048
- 2b Zhao Y, Jin L, Li P, Lei A. J. Am. Chem. Soc. 2008; 130: 9429
- 2c Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
- 2d Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
- 2e Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459
- 2f Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
- 3 Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247
- 4 Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 5 Meng Q.-Y, Zhong J.-J, Liu Q, Gao X.-W, Zhang H.-H, Lei T, Li Z.-J, Feng K, Chen B, Tung C.-H, Wu L.-Z. J. Am. Chem. Soc. 2013; 135: 19052
- 6 Zhong J.-J, Meng Q.-Y, Liu B, Li X.-B, Gao X.-W, Lei T, Wu C.-J, Li Z.-J, Tung C.-H, Wu L.-Z. Org. Lett. 2014; 16: 1988
- 7a Kaerkaes MD. Chem. Soc. Rev. 2018; 47: 5786
- 7b Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591
- 7c Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
- 7d Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086
- 7e Muniz K. Acc. Chem. Res. 2018; 51: 1507
- 7f Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
- 7g Menigaux D, Belmont P, Brachet E. Eur. J. Org. Chem. 2017; 2008
- 7h Tang S, Liu Y, Lei A. Chem 2018; 4: 27
- 7i Zhang H, Lei A. Asian J. Org. Chem. 2018; 7: 1164
- 7j Luo J, Wei W.-T. Adv. Synth. Catal. 2018; 360: 2076
- 7k Tang S, Zeng L, Lei A. J. Am. Chem. Soc. 2018; 140: 13128
- 8 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
- 9 Niu L, Yi H, Wang S, Liu T, Liu J, Lei A. Nat. Commun. 2017; 8: 14226
- 10 Pandey G, Singh D, Laha R. Asian J. Org. Chem. 2017; 6: 469
- 11 Song C, Yi H, Dou B, Li Y, Singh AK, Lei A. Chem. Commun. 2017; 3689
- 12 Samanta S, Ravi C, Rao SN, Joshi A, Adimurthy S. Org. Biomol. Chem. 2017; 15: 9590
- 13 Chen H, Yi H, Tang Z, Bian C, Zhang H, Lei A. Adv. Synth. Catal. 2018; 360: 3220
- 14 Tong K, Liu X, Zhang Y, Yu S. Chem. Eur. J. 2016; 22: 15669
- 15 Meyer AU, Berger AL, Koenig B. Chem. Commun. 2016; 10918
- 16 Sakakibara Y, Ito E, Kawakami T, Yamada S, Murakami K, Itami K. Chem. Lett. 2017; 46: 1014
- 17 Ito E, Fukushima T, Kawakami T, Murakami K, Itami K. Chem 2017; 2: 383
- 18 Martinez C, Bosnidou AE, Allmendinger S, Muniz K. Chem. Eur. J. 2016; 22: 9929
- 19 Choi S, Chatterjee T, Choi WJ, You Y, Cho EJ. ACS Catal. 2015; 5: 4796
- 20 Yuzawa H, Yoshida H. Chem. Commun. 2010; 8854
- 21 Yuzawa H, Kumagai J, Yoshida H. J. Phys. Chem. C 2013; 117: 11047
- 22 Zheng Y.-W, Chen B, Ye P, Feng K, Wang W, Meng Q.-Y, Wu L.-Z, Tung C.-H. J. Am. Chem. Soc. 2016; 138: 10080
- 23 Gao W.-J, Li W.-C, Zeng C.-C, Tian H.-Y, Hu L.-M, Little RD. J. Org. Chem. 2014; 79: 9613
- 24 Qiu Y, Struwe J, Meyer TH, Oliveira JC. A, Ackermann L. Chem. Eur. J. 2018; 24: 12784
- 25 Sauermann N, Mei R, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5090
- 26 Gao X, Wang P, Zeng L, Tang S, Lei A. J. Am. Chem. Soc. 2018; 140: 4195
- 27 Kaur S, Kumar M, Bhalla V. Green Chem. 2016; 18: 5870
- 28 Zhao Y, Huang B, Yang C, Xia W. Org. Lett. 2016; 18: 3326
- 29 Tang S, Wang S, Liu Y, Cong H, Lei A. Angew. Chem. Int. Ed. 2018; 57: 4737
- 30 Zhao Y, Huang B, Yang C, Li B, Gou B, Xia W. ACS Catal. 2017; 7: 2446
- 31 Das S, Natarajan P, König B. Chem. Eur. J. 2017; 23: 18161
- 32 Margrey KA, Levens A, Nicewicz DA. Angew. Chem. Int. Ed. 2017; 56: 15644
- 33 Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 11288
- 34 Morofuji T, Shimizu A, Yoshida J.-i. J. Am. Chem. Soc. 2015; 137: 9816
- 35 Yamaguchi T, Yamaguchi E, Itoh A. Org. Lett. 2017; 19: 1282
- 36 Zhang S, Li L, Xue M, Zhang R, Xu K, Zeng C. Org. Lett. 2018; 20: 3443
- 37 Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587
- 38 Maity S, Zheng N. Angew. Chem. Int. Ed. 2012; 51: 9562
- 39 Yi H, Niu L, Song C, Li Y, Dou B, Singh AK, Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
- 40 Xin J.-R, He Y.-H, Guan Z. Org. Chem. Front. 2018; 5: 1684
- 41 Leow D. Org. Lett. 2014; 16: 5812
- 42 Alam R, Molander GA. Org. Lett. 2018; 20: 2680
- 43 Green RA, Pletcher D, Leach SG, Brown RC. D. Org. Lett. 2016; 18: 1198
- 44 Xuan J, Feng Z.-J, Duan S.-W, Xiao W.-J. RSC Adv. 2012; 2: 4065
- 45 Pandey G, Laha R. Angew. Chem. Int. Ed. 2015; 54: 14875
- 46 Pandey G, Laha R, Singh D. J. Org. Chem. 2016; 81: 7161
- 47 Fan R, Pu D, Wen F, Wu J. J. Org. Chem. 2007; 72: 8994
- 48 Martinez C, Muniz K. Angew. Chem. Int. Ed. 2015; 54: 8287
- 49 O’Broin CQ, Fernandez P, Martinez C, Muniz K. Org. Lett. 2016; 18: 436
- 50 Wappes EA, Fosu SC, Chopko TC, Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
- 51 Becker P, Duhamel T, Stein CJ, Reiher M, Muniz K. Angew. Chem. Int. Ed. 2017; 56: 8004
- 52 Becker P, Duhamel T, Martinez C, Muniz K. Angew. Chem. Int. Ed. 2018; 57: 5166
- 53 Duhamel T, Stein CJ, Martinez C, Reiher M, Muniz K. ACS Catal. 2018; 8: 3918
- 54 Herold S, Bafaluy D, Muniz K. Green Chem. 2018; 20: 3191
- 55 Hu X, Zhang G, Bu F, Nie L, Lei A. ACS Catal. 2018; 8: 9370
- 56 Zhang H, Muñiz K. ACS Catal. 2017; 7: 4122
- 57 Wappes EA, Nakafuku KM, Nagib DA. J. Am. Chem. Soc. 2017; 139: 10204
- 58 Gulzar N, Klussmann M. Org. Biomol. Chem. 2013; 11: 4516
- 59 Gulzar N, Jones KM, Konnerth H, Breugst M, Klussmann M. Chem. Eur. J. 2015; 21: 3367
- 60 Zhang L, Yi H, Wang J, Lei A. J. Org. Chem. 2017; 82: 10704
- 61 Wu J, Zhou Y, Zhou Y, Chiang C.-W, Lei A. ACS Catal. 2017; 7: 8320
- 62 Liang S, Zeng C.-C, Tian H.-Y, Sun B.-G, Luo X.-G, Ren F.-z. J. Org. Chem. 2016; 81: 11565
- 63 Gong M, Huang J.-M. Chem. Eur. J. 2016; 22: 14293