Subscribe to RSS
DOI: 10.1055/s-0037-1610382
Recent Developments in Polyene Cyclizations and Their Applications in Natural Product Synthesis
Publication History
Received: 15 October 2018
Accepted: 18 October 2018
Publication Date:
15 November 2018 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
Cascade polyene cyclization reactions are highly efficient and elegant bioinspired transformations that involve simultaneous multiple bond constructions to rapidly generate complex polycyclic molecules. This review summarizes the most prominent work on a variety of cationic and radical cascade cyclizations and their applications in natural product synthesis published between 2014 and 2018.
1 Introduction
2 Cationic Polyene Cyclizations
2.1 Lewis Acid Mediated Polyene Cyclizations
2.2 Brønsted Acid Mediated Polyene Cyclizations
2.3 Halogen Electrophile Initiated Polyene Cyclizations
2.4 Sulfur Electrophile Initiated Polyene Cyclizations
2.5 Transition-Metal-Mediated Cationic Polyene Cyclizations
3 Radical Polyene Cyclizations
3.1 Transition-Metal-Mediated Radical Polyene Cyclizations
3.2 Photocatalyst-Mediated Polyene Cyclizations
4 Origin of Stereocontrol in Polyene Cyclizations
5 Conclusion
-
References
- 1a Stork G, Burgstahler AW. J. Am. Chem. Soc. 1955; 77: 5068
- 1b Eschenmoser A, Ruzicka L, Jeger O, Arigoni D. Helv. Chim. Acta 1955; 38: 1890
- 1c Eschenmoser A, Arigoni D. Helv. Chim. Acta 2005; 88: 3011
- 2a Johnson WS, Semmelhack MF, Sultanbawa MU. S, Dolak LA. J. Am. Chem. Soc. 1968; 90: 2994
- 2b Johnson WS. Acc. Chem. Res. 1968; 1: 1
- 2c Johnson WS. Bioorg. Chem. 1976; 5: 51
- 4a Snyder SA, Levinson AM. Comprehensive Organic Synthesis II . Vol. 3. Elsevier; Oxford: 2014: 268
- 4b Li X.-W, Nay B. Nat. Prod. Rep. 2014; 31: 533
- 4c Felix RJ, Munro-Leighton C, Gagné MR. Acc. Chem. Res. 2014; 47: 2319
- 4d Yoshimura T. Tetrahedron Lett. 2014; 55: 5109
- 4e Dhambri S, Mohammad S, Van Buu ON, Galvani G, Meyer Y, Lannou M.-I, Sorin G, Ardisson J. Nat. Prod. Rep. 2015; 32: 841
- 4f Ardkhean R, Caputo DF. J, Morrow SM, Shi H, Xiong Y, Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
- 4g Ungarean CN, Southgate EH, Sarlah D. Org. Biomol. Chem. 2016; 14: 5454
- 4h Hung K, Hu X, Maimone TJ. Nat. Prod. Rep. 2018; 35: 174
- 4i Landry ML, Burns NZ. Acc. Chem. Res. 2018; 51: 1260
- 5a Xu H, Tang H, Feng H, Li Y. Tetrahedron Lett. 2014; 55: 7118
- 5b Xu H, Tang H, Feng H, Li Y. J. Org. Chem. 2014; 79: 10110
- 6 Surendra K, Qiu W, Corey EJ. J. Am. Chem. Soc. 2011; 133: 9724
- 7a Barrett TN, Barrett AG. M. J. Am. Chem. Soc. 2014; 136: 17013
- 7b Ma T.-K, Elliott DC, Reid S, White AJ. P, Parsons PJ, Barrett AG. M. J. Org. Chem. 2018; 83: 13276
- 8 Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
- 9 Suzuki K, Yamakoshi H, Nakamura S. Chem. Eur. J. 2015; 21: 17605
- 10 Rajendar G, Corey EJ. J. Am. Chem. Soc. 2015; 137: 5837
- 11 Camelio AM, Johnson TC, Siegel D. J. Am. Chem. Soc. 2015; 137: 11864
- 12a Speck K, Wildermuth R, Magauer T. Angew. Chem. Int. Ed. 2016; 55: 14131
- 12b Speck K, Magauer T. Chem. Eur. J. 2017; 23: 1157
- 13 Chan C.-K, Chen Y.-H, Chang M.-Y. Tetrahedron 2016; 72: 5121
- 14 Minassi A, Pollastro F, Chianese G, Caprioglio D, Taglialatela-Scafati O, Appendino G. Angew. Chem. Int. Ed. 2017; 56: 7935
- 15 Graham M, Baker RW, McErlean CS. P. Eur. J. Org. Chem. 2017; 908
- 16 Saito Y, Goto M, Nakagawa-Goto K. Org. Lett. 2018; 20: 628
- 17 Zhang F.-Z, Tian Y, Li G.-X, Qu J. J. Org. Chem. 2015; 80: 1107
- 18 Tian Y, Xu X, Zhang L, Qu J. Org. Lett. 2016; 18: 268
- 19a Ishihara K, Nakamura S, Yamamoto H. J. Am. Chem. Soc. 1999; 121: 4906
- 19b Nakamura S, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2000; 122: 8131
- 19c Ishihara K, Ishibashi H, Yamamoto H. J. Am. Chem. Soc. 2001; 123: 1505
- 19d Ishihara K, Ishibashi H, Yamamoto H. J. Am. Chem. Soc. 2002; 124: 3647
- 19e Ishibashi H, Ishihara K, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 11122
- 19f Surendra K, Corey EJ. J. Am. Chem. Soc. 2012; 134: 11992
- 19g Surendra K, Rajendar G, Corey EJ. J. Am. Chem. Soc. 2014; 136: 642
- 20 Lin S.-C, Chein R.-J. J. Org. Chem. 2017; 82: 1575
- 21 Elkin M, Szewczyk SM, Scruse AC, Newhouse TR. J. Am. Chem. Soc. 2017; 139: 1790
- 22 Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Angew. Chem. Int. Ed. 2018; 57: 2115
- 23 Alonso P, Fontaneda R, Pardo P, Fañanás FJ, Rodríguez F. Org. Lett. 2018; 20: 1659
- 24 Peng X.-R, Lu S.-Y, Shao L.-D, Zhou L, Qiu M.-H. J. Org. Chem. 2018; 83: 5516
- 25a Snyder SA, Treitler DS. Angew. Chem. Int. Ed. 2009; 48: 7899
- 25b Snyder SA, Treitler DS, Brucks AP. J. Am. Chem. Soc. 2010; 132: 14303
- 26 Shen M, Kretschmer M, Brill ZG, Snyder SA. Org. Lett. 2016; 18: 5018
- 27 Samanta RC, Yamamoto H. J. Am. Chem. Soc. 2017; 139: 1460
- 28 Alonso P, Pardo P, Fontaneda R, Fañanás FJ, Rodríguez F. Chem. Eur. J. 2017; 23: 13158
- 29 Ascheberg C, Bock J, Buß F, Mück-Lichtenfeld C, Daniliuc CG, Bergander K, Dielmann F, Hennecke U. Chem. Eur. J. 2017; 23: 11578
- 30 Arnold AM, Pöthig A, Drees M, Gulder T. J. Am. Chem. Soc. 2018; 140: 4344
- 31 Schevenels FT, Shen M, Snyder SA. Org. Lett. 2017; 19: 2
- 32 Cole C, Chi H, DeBacker K, Snyder S. Synthesis 2018; 50: A-H
- 33 Tao Z, Robb KA, Zhao K, Denmark SE. J. Am. Chem. Soc. 2018; 140: 3569
- 34 Geier MJ, Gagné MR. J. Am. Chem. Soc. 2014; 136: 3032
- 35 McCulley CH, Geier MJ, Hudson BM, Gagné MR, Tantillo DJ. J. Am. Chem. Soc. 2017; 139: 11158
- 36a Toullec PY, Blarre T, Michelet V. Org. Lett. 2009; 11: 2888
- 36b Sethofer SG, Mayer T, Toste FD. J. Am. Chem. Soc. 2010; 132: 8276
- 36c Pradal A, Chen Q, Faudot dit Bel P, Toullec P, Michelet V. Synlett 2012; 2012: 74
- 37 Rong Z, Echavarren AM. Org. Biomol. Chem. 2017; 15: 2163
- 38 Lai Y, Zhang N, Zhang Y, Chen J.-H, Yang Z. Org. Lett. 2018; 20: 4298
- 39 Schafroth MA, Sarlah D, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2012; 134: 20276
- 40 Zhou S, Guo R, Yang P, Li A. J. Am. Chem. Soc. 2018; 140: 9025
- 41a Breslow R, Barrett E, Mohacsi E. Tetrahedron Lett. 1962; 3: 1207
- 41b Breslow R, Olin SS, Groves JT. Tetrahedron Lett. 1968; 9: 1837
- 42 Curran DP, Porter NA, Giese B. Stereochemistry of Radical Reactions . VCH; Weinheim: 1995
- 43 Rosales A, Muñoz-Bascón J, Roldan-Molina E, Rivas-Bascón N, Padial NM, Rodríguez-Maecker R, Rodríguez-García I, Oltra JE. J. Org. Chem. 2015; 80: 1866
- 44 Fuse S, Ikebe A, Oosumi K, Karasawa T, Matsumura K, Izumikawa M, Johmoto K, Uekusa H, Shin-ya K, Doi T, Takahashi T. Chem.–Eur. J. 2015; 21: 9454
- 45 Göhl M, Seifert K. Eur. J. Org. Chem. 2015; 6249
- 46 Trotta AH. Org. Lett. 2015; 17: 3358
- 47 Sun Y, Meng Z, Chen P, Zhang D, Baunach M, Hertweck C, Li A. Org. Chem. Front. 2016; 3: 368
- 48 Furuta M, Hanaya K, Sugai T, Shoji M. Tetrahedron 2017; 73: 2316
- 49 Deng H, Cao W, Liu R, Zhang Y, Liu B. Angew. Chem. Int. Ed. 2017; 56: 5849
- 50 Cao W, Deng H, Sun Y, Liu B, Qin S. Chem. Eur. J. 2018; 24: 9120
- 51 Merchant RR, Oberg KM, Lin Y, Novak AJ. E, Felding J, Baran PS. J. Am. Chem. Soc. 2018; 140: 7462
- 52a Hoffmann U, Gao Y, Pandey B, Klinge S, Warzecha K.-D, Krueger C, Roth HD, Demuth M. J. Am. Chem. Soc. 1993; 115: 10358
- 52b Heinemann C, Demuth M. J. Am. Chem. Soc. 1997; 119: 1129
- 52c Heinemann C, Demuth M. J. Am. Chem. Soc. 1999; 121: 4894
- 52d Goeller F, Heinemann C, Demuth M. Synthesis 2001; 1114
- 52e Rosales V, Zambrano J, Demuth M. Eur. J. Org. Chem. 2004; 1798
- 52f Ozser ME, Icil H, Makhynya Y, Demuth M. Eur. J. Org. Chem. 2004; 3686
- 53 Yang Z, Li H, Zhang L, Zhang M.-T, Cheng J.-P, Luo S. Chem. Eur. J. 2015; 21: 14723
- 54 Yang Z, Li S, Luo S. Acta Chim. Sin. 2017; 75: 351
- 55 Trotta AH. J. Org. Chem. 2017; 82: 13500
For recent reviews in this area, see