CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 483-487
DOI: 10.1055/s-0037-1610384
letter
Copyright with the author

Catalytic Enantioselective Synthesis of 4-Amino-1,2,3,4-tetrahydropyridine Derivatives from Intramolecular Nucleophilic Addition Reaction of Tertiary Enamides

Shuo Tong*
,
MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. of China   Email: tongshuo@mail.tsinghua.edu.cn   Email: wangmx@mail.tsinghua.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (No. 21320102002, 91427301) for financial support.
Further Information

Publication History

Received: 30 September 2018

Accepted after revision: 22 October 2018

Publication Date:
15 November 2018 (online)


Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue

Abstract

A general and efficient method for the synthesis of highly enantiopure 4-amino-1,2,3,4-tetradydropyridine derivatives based on chiral phosphoric acid catalyzed intramolecular nucleophilic addition of tertiary enamides to imines has been developed. We have also demonstrated a substrate engineering strategy to significantly improve the enantioselectivity of asymmetric catalysis

Supporting Information

 
  • References and Notes

  • 1 Watson PS, Jiang B, Scott B. Org. Lett. 2000; 2: 3679
    • 2a Ofner S, Hauser K, Schilling W, Vassout A, Veenstra SJ. Bioorg. Med. Chem. Lett. 1996; 6: 1623
    • 2b Veenstra SJ, Hauser K, Schilling W, Betschart C, Ofner S. Bioorg. Med. Chem. Lett. 1996; 6: 3029
  • 3 Patrizio M, Markus B, Patrick DG, Holger F, Michael H, Joerg H, Buelent K, Bernd K, Bernd ML, Alexander M, Robert N, Etienne R, Elena S, Urs S. Bio. Med. Chem. Lett. 2010; 20: 11009
    • 4a Van Niel MB, Collins I, Beer MS, Broughton HB, Cheng SK. F, Goodacre SC, Heald A, Locker KL, MacLeod AM, Morrison D, Moyes CR, O’Connor D, Pike A, Rowley M, Russell MG. N, Sohal B, Stanton JA, Thomas S, Verrier H, Watt AP, Castro JL. J. Med. Chem. 1999; 42: 2087
    • 4b Lübbers T, Böhringer M, Gobbi L, Hennig M, Hunziker D, Kuhn B, Löffler B, Mattei P, Narquizian R, Peters J.-U, Ruff Y, Wessel HP, Wyss P. Bioorg. Med. Chem. Lett. 2007; 17: 2966
    • 4c Benmehdi H, Lamouri A, Serradji N, Pallois F, Heymans F. Eur. J. Org. Chem. 2008; 299
    • 4d Barluenga J, Mateos C, Aznar F, Valdés C. Org. Lett. 2002; 4: 3667
    • 4e Badorrey R, Portaña E, Díaz-de-Villegas MD, Gálvez JA. Org. Biomol. Chem. 2009; 7: 2912
    • 5a Sun H, Scott DO. ACS Med. Chem. Lett. 2011; 2: 638 ; and references cited therein
    • 5b Manetti D, Martini E, Ghelardini C, Dei S, Galeotti N, Guandalini L, Romanelli MN, Scapecchi S, Teodori E, Bartolini A, Gualtieri F. Bioorg. Med. Chem. Lett. 2003; 13: 2303

      For reviews of enamide syntheses, see:
    • 6a Dehli JR, Legros J, Bolm C. Chem. Commun. 2005; 973
    • 6b Tracey MR, Hsung RP, Antoline J, Kurtz KC, Shen L, Slafer BW, Zhang Y. Category 3, Compounds with Four and Three Carbon Heteroatom Bonds . In Science of Synthesis . Vol. 21. Weinreb SM. Thieme; Stuttgart: 2005: 387
  • 7 For an overview, see: Wang M.-X. Chem Commun. 2015; 51: 6039
  • 8 Carbery DR. Org. Biomol. Chem. 2008; 6: 3455
  • 9 Gopalaiah K, Kagan HB. Chem. Rev. 2011; 111: 4599

    • Secondary enamides are active aza-ene components to undergo aza-ene addition reactions with highly electron-deficient unsaturated compounds. For reviews, see:
    • 10a Matsubara R, Kobayashi S. Acc. Chem. Res. 2008; 41: 292
    • 10b Bernadat G, Masson G. Synlett 2014; 25: 2842
    • 11a Yang L, Deng G, Wang D.-X, Huang Z.-T, Zhu J, Wang M.-X. Org. Lett. 2007; 9: 1387
    • 11b Yang L, Zheng Q.-Y, Wang D.-X, Huang Z.-T, Wang M.-X. Org. Lett. 2008; 10: 2461
    • 11c Yang L, Lei C.-H, Wang D.-X, Huang Z.-T, Wang M.-X. Org. Lett. 2010; 12: 3918
    • 12a Yang L, Wang D.-X, Huang Z.-T, Wang M.-X. J. Am. Chem. Soc. 2009; 131: 10390
    • 12b Tong S, Wang D.-X, Zhao L, Zhu J, Wang M.-X. Angew. Chem. Int. Ed. 2012; 51: 4417
    • 12c He L, Zhao L, Wang D.-X, Wang M.-X. Org. Lett. 2014; 16: 5972
    • 12d Zhu W, Zhao L, Wang M-X. J. Org. Chem. 2015; 80: 12047
    • 12e Xu X.-M, Zhao L, Zhu J, Wang M.-X. Angew. Chem. Int. Ed. 2016; 55: 3799
    • 12f Xu X.-M, Lei C.-H, Tong S, Zhu J, Wang M.-X. Org. Chem. Front. 2018; 5: 3138
    • 13a Shono T, Matsumura Y, Tsubata K, Sugihara Y, Yamane S, Kanazawa T, Aoki T. J. Am. Chem. Soc. 1982; 104: 6697
    • 13b Andan L, Miesch L. Org. Lett. 2018; 20: 3430
    • 14a Lei C.-H, Wang D.-X, Zhao L, Zhu J, Wang M.-X. J. Am. Chem. Soc. 2013; 135: 4708
    • 14b Lei C.-H, Wang D.-X, Zhao L, Zhu J, Wang M.-X. Chem. Eur. J. 2013; 19: 16981
  • 15 Zhang X.-Y, Xu X.-M, Zhao L, You J, Zhu J, Wang M.-X. Tetrahedron Lett. 2015; 56: 3898
  • 16 Tong S, Yang X, Wang D.-X, Zhao L, Zhu J, Wang M.-X. Tetrahedron 2012; 68: 6492
  • 17 Zhou Q.-L. Privileged Chiral Ligands and Catalysts . Wiley-VCH; Weinheim: 2011
    • 18a Akiyama T, Itoh J, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
    • 18b Yamanaka M, Itoch J, Fuchibe K, Akiyama T. J. Am. Chem. Soc. 2007; 129: 6756
  • 19 Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For recent reviews on chiral phosphoric acids, see:
    • 20a Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
    • 20b Lv J, Luo S. Chem. Commun. 2013; 49: 847
    • 20c Li P, Yamamoto H. Top. Curr. Chem. 2011; 37: 161
    • 20d Yu J, Shi F, Gong LZ. Acc. Chem. Res. 2011; 44: 1156
    • 20e Kampen D, Reisinger CM, List B. Top. Curr. Chem. 2010; 291: 395
    • 20f Mahlan M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 20g Terada M. Synthesis 2010; 1929
    • 20h Hatano M, Ishihara K. Synthesis 2010; 3785
    • 20i Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 20j Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 20k Akiyama T. Chem. Rev. 2007; 107: 5744
    • 21a Nelson DL, Cox MM. Lehninger Principles of Biochemistry . W. H. Freeman and Company; New York: 2005. 4th ed., Chap. 6
    • 21b Faber K. Biotransformations in Organic Chemistry . Springer; Berlin: 1997. 3rd ed. Chap. 1

      For select examples about substrate engineering in biocatalytic transformations, see:
    • 22a Braunegg G, De Raadt A, Feichtenhofer S, Griengl H, Kopper I, Lehmann A, Weber H.-J. Angew. Chem. Int. Ed. 1999; 38: 2763
    • 22b De Raadt A, Griengl H, Weber H. Chem. Eur. J. 2001; 7: 27
    • 22c Ma D.-Y, Zheng Q.-Y, Wang D.-X, Wang M.-X. Org. Lett. 2006; 8: 3231
    • 22d Ma D.-Y, Wang D.-X, Pan J, Huang Z.-T, Wang M.-X. J. Org. Chem. 2008; 73: 4087
  • 23 General Reaction Procedure A mixture of enamides 1a (0.5 mmol) and amines 2b (0.5 mmol) in dry CCl4 (25 mL) was stirred at ambient temperature for 5 min. Chiral phosphoric acid catalyst CC8 (75 mg, 0.1 mmol, 0.2 equiv) was added to the reaction system. Upon completion of the reaction, which was monitored by TLC, the reaction mixture was quenched with 10 mL sat. NaHCO3 solution, then extracted with 3 × 10 mL CH2Cl2. The combined organic layers were washed with brine and dried over anhydrous sodium sulfate. After removal of the solvent, the residue was purified by column chromatography on silica gel to yield pure product 4ab. Oil (98% yield); ee 88.8% (chiral HPLC analysis). IR (KBr): 3422, 1723, 1656, 1601 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.21–7.44 (m, 17 H), 6.99 (br s, 2 H), 5.50 (br s, 1 H), 5.08 (s, 1 H), 4.05 (br s, 1 H), 3.74 (br s, 1 H), 3.41 (br s, 1 H), 2.00 (br s, 2 H), 1.62 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 170.9, 144.0, 143.8, 140.6, 137.8, 136.2, 131.2, 130.7, 128.7, 128.6, 128.3, 128.1, 127.5, 127.34, 127.27, 127.2, 121.3, 118.6, 64.4, 48.8, 44.1, 31.2. HRMS (ESI): m/z calcd for C31H27BrN2O [M + Na]+, [M + 2 + Na]+: 521.1229, 523.1213; found: 521.1226, 523.1216.