Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
CC BY-ND-NC 4.0 · Synthesis 2019; 51(01): 251-257
DOI: 10.1055/s-0037-1610398
DOI: 10.1055/s-0037-1610398
feature
Continuous Flow Chlorination of Alkenyl Iodides Promoted by Copper Tubing
This research was supported by the Fonds pour la formation à la Recherche dans l’Industrie et dans l’Agriculture (F.R.I.A., graduate fellowship to A.N.), the Natural Science and Engineering Research Council of Canada (NSERC) under the CREATE Training Program in Continuous Flow Science (CREATE 449307-2014), and the ‘G-3 des universités francophones’ (Chimie en flux continu et catalyse - C3F).Further Information
Publication History
Received: 25 October 2018
Accepted: 05 November 2018
Publication Date:
30 November 2018 (online)
Abstract
A simple continuous flow synthesis of alkenyl chlorides from the corresponding readily available alkenyl iodides in copper reactor tubing is described. A variety of alkenyl chlorides were obtained in good to excellent yields with full retention of the double bond geometry. The reaction time was reduced by a factor of 24–48 compared to the batch process.
Key words
copper catalysis - heterogeneous catalysis - halogen exchange - Finkelstein reaction - continuous flow processSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610398.
- Supporting Information
-
References
- 1a Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc. 1986; 108: 7408
- 1b Stork G, Zhao K. Tetrahedron Lett. 1989; 30: 2173
- 1c Kawaguchi S.-i, Ogawa A. Org. Lett. 2010; 12: 1893
- 1d Chan TH, Fleming I. Synthesis 1979; 761
- 1e Stamos DP, Taylor AG, Kishi Y. Tetrahedron Lett. 1996; 37: 8647
- 1f Arefolov A, Langille NF, Panek JS. Org. Lett. 2001; 3: 3281
- 1g Ilardi EA, Stivala CE, Zakarian A. Org. Lett. 2008; 10: 1727
- 1h Jung M, Light LA. Tetrahedron Lett. 1982; 23: 3851
- 1i Darwish A, Chong JM. Tetrahedron 2012; 68: 654
- 1j Das JP, Sujit R. J. Org. Chem. 2002; 67: 7861
- 1k Kulbitski K, Nisnevich G, Gandelman M. Adv. Synth. Catal. 2011; 353: 1438
- 2a Williams DR, Nishitani K, Bennett W, Sit SY. Tetrahedron Lett. 1981; 22: 3745
- 2b Miller RB, McGarvey G. J. Org. Chem. 1978; 43: 4424
- 2c Barluenga J, Moriel P, Aznar F, Valdes C. Adv. Synth. Catal. 2006; 348: 347
- 2d Bull JA, Mousseau JJ, Charette AB. Org. Lett. 2008; 10: 5485
- 2e Telvekar VN, Takale BS. Tetrahedron Lett. 2011; 52: 2394
- 3a Sheppard TD. Org. Biomol. Chem. 2009; 7: 1043
- 3b Evano G, Nitelet A, Thilmany P, Dewez DF. Front. Chem. 2018; 6: 114
- 4a Nitelet A, Evano G. Org. Lett. 2016; 18: 1904
- 4b Nitelet A, Jouvin K, Evano G. Tetrahedron 2016; 72: 5972
- 5a Newman SG, Jensen KF. Green Chem. 2013; 15: 1456
- 5b Gutmann B, Kappe CO. J. Flow Chem. 2017; 7: 65
- 5c Morse PD, Beingessner RL, Jamison TF. Isr. J. Chem. 2017; 57: 218
- 5d Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 5e Wirth T. Angew. Chem. Int. Ed. 2017; 56: 682
- 6a Bogdan AR, Sach NW. Adv. Synth. Catal. 2009; 351: 849
- 6b Ceylan S, Klande T, Vogt C, Friese C, Kirschning A. Synlett 2010; 2009
- 6c Bogdan AR, James K. Org. Lett. 2011; 13: 4060
- 6d Zhang Y, Jamison TF, Patel S, Mainolfi N. Org. Lett. 2011; 13: 280
- 6e Tan L.-M, Sem Z.-Y, Chong W.-Y, Liu X, ; Hendra; Kwan WL, Lee C.-LK. Org. Lett. 2013; 15: 65
- 6f Cyr P, Charette AB. Synlett 2014; 25: 1409
- 6g Bao J, Tranmer GK. Chem. Commun. 2015; 51: 3037
- 6h Nuyts K, Ceulemans M, Parac-Vogt TN, Bultynck G, De Borggraeve WM. Tetrahedron Lett. 2015; 56: 1687
- 7 Chen M, Ichikawa S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 263
- 8a Coste A, Karthikeyan G, Couty F, Evano G. Angew. Chem. Int. Ed. 2009; 48: 4381
- 8b Coste A, Couty F, Evano G. Org. Lett. 2009; 11: 4454
- 8c Jouvin K, Couty F, Evano G. Org. Lett. 2010; 12: 3272
- 8d Evano G, Tadiparthi K, Couty F. Chem. Commun. 2011; 47: 179
- 8e Laouiti A, Rammah MM, Rammah MB, Marrot J, Couty F, Evano G. Org. Lett. 2012; 14: 6
- 8f Jouvin K, Bayle A, Legrand F, Evano G. Org. Lett. 2012; 14: 1652
- 8g Pradal A, Evano G. Chem. Commun. 2014; 50: 11907
- 8h Theunissen C, Wang J, Evano G. Chem. Sci. 2017; 8: 3465
- 9a Lebel H, Piras H, Borduy M. ACS Catal. 2016; 6: 1109
- 9b Rullière P, Cyr P, Charette AB. Org. Lett. 2016; 18: 1988
- 9c Audubert C, Gamboa Marin OJ, Lebel H. Angew. Chem. Int. Ed. 2017; 56: 6294
- 9d Audubert C, Lebel H. Org. Lett. 2017; 19: 4407
- 9e Lévesque E, Laporte ST, Charette AB. Angew. Chem. Int. Ed. 2017; 56: 837
- 9f Rullière P, Benoit G, Allouche EM. D, Charette AB. Angew. Chem. Int. Ed. 2018; 57: 5777
- 9g Sayes M, Benoit G, Charette AB. Angew. Chem. Int. Ed. 2018; 57: 13514
- 10 Matsuda T, Suzuki K, Miura N. Adv. Synth. Catal. 2013; 355: 3396
For representative examples, see:
For representative examples, see:
For recent reviews on aromatic and vinylic Finkelstein reactions, see:
For representative contributions, see:
For representative contributions, see: