Subscribe to RSS

DOI: 10.1055/s-0037-1610402
A [3+2] Cyclization of Siloxyalkynes and Isocyanides for the Synthesis of Oxazoles
Financial support was provided by the National Science Foundation of China (21572192, 21490570) and the Hong Kong RGC (GRF16304714).Publication History
Received: 29 September 2018
Accepted after revision: 31 October 2018
Publication Date:
27 November 2018 (online)

Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue
Abstract
A mild and efficient [3+2] cyclization of siloxyalkynes for the synthesis of aromatic heterocycles is developed. It is a new addition to the cyclization reactions of these versatile species. In the presence of TBAF as promoter, siloxyalkynes react with electron-withdrawing isocyanides to form a range of oxazole products. In this reaction, siloxyalkynes contribute the C–O unit for the cyclization, which is different from previous typical examples where it is a two-carbon contributor. Mechanistic studies provided insights into the mechanism, which involves a ketene intermediate. Based on the mechanistic insight, an alternative catalytic system was also demonstrated to be effective for the same transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610402.
- Supporting Informa
-
References and Notes
- 1a Qian H, Zhao W, Sun J. Chem. Rec. 2014; 14: 1070
- 1b Shindo M. Synthesis 2003; 2275
- 1c Shindo M. Tetrahedron 2007; 63: 10
- 2a Sweis RF, Schramm MP, Kozmin SA. J. Am. Chem. Soc. 2004; 126: 7442
- 2b Danheiser RL, Gee SK. J. Org. Chem. 1984; 49: 1672
- 2c Danheiser RL, Gee SK, Perez JJ. J. Am. Chem. Soc. 1986; 108: 806
- 2d Movassaghi M, Hill MD, Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
- 2e Türkmen YE, Montavon TJ, Kozmin SA, Rawal VH. J. Am. Chem. Soc. 2012; 134: 9062
- 2f Montavon TJ, Türkmen YE, Shamsi NA, Miller C, Sumaria CS, Rawal VH, Kozmin SA. Angew. Chem. Int. Ed. 2013; 52: 13576
- 2g Cabrera-Pardo JR, Chai DI, Liu S, Mrksich M, Kozmin SA. Nat. Chem. 2013; 5: 423
- 2h Zhao W, Wang Z, Sun J. Angew. Chem. Int. Ed. 2012; 51: 6209
- 2i Zhao W, Li Z, Sun J. J. Am. Chem. Soc. 2013; 135: 4680
- 2j Zhao W, Sun J. Synlett 2014; 25: 303
- 2k Zhao W, Qian H, Li Z, Sun J. Angew. Chem. Int. Ed. 2015; 54: 10005
- 3a Qi X, Ready JM. Angew. Chem. 2008; 120: 7176
- 3b Buchner KM, Woerpel KA. Organometallics 2010; 29: 1661
- 4 Yeh VS. C. Tetrahedron 2004; 60: 11995
- 5a Adamczeski M, Quiñoá E, Crews P. J. Am. Chem. Soc. 1989; 111: 647
- 5b Searle PA, Richter RK, Molinski TF. J. Org. Chem. 1996; 61: 4073
- 6 Nagatsu A, Kajitani H, Sakakibara J. Tetrahedron Lett. 1995; 36: 4097
- 7a Boyarskiy VP, Bokach NA, Luzyanin KV, Kukushkin VYu. Chem. Rev. 2015; 115: 2698
- 7b Van Leusen D, Van Leusen AM. Org. React. (N. Y.) 2001; 57: 417
- 8a Robinson R. J. Chem. Soc., Trans. 1909; 95: 2167
- 8b Gabriel S. Ber. Dtsch. Chem. Ges. 1910; 43: 134
- 8c Wiley RH. Chem. Rev. 1945; 37: 401
- 8d Nunami K.-I, Suzuki M, Yoneda N. J. Org. Chem. 1979; 44: 1887
- 8e van de Coevering R, Kuil M, Gebbink RJ. M. K, van Koten G. Chem. Commun. 2002; 1636
- 8f Sladojevich F, Trabocchi A, Guarna A, Dixon DJ. J. Am. Chem. Soc. 2011; 133: 1710
- 8g Franchino A, Jakubec P, Dixon DJ. Org. Biomol. Chem. 2016; 14: 93
- 8h Zhang M.-Z, Jia C.-Y, Gu Y.-C, Mulholland N, Turner S, Beattie D, Zhang W.-H, Yang G.-F, Clough J. Eur. J. Med. Chem. 2017; 126: 669
- 8i Suzuki M, Iwasaki T, Miyoshi M, Okumura K, Matsumoto K. J. Org. Chem. 1973; 38: 3571
- 8j Huang W.-S, Zhang Y.-X, Yuan C.-Y. Synth. Commun. 1996; 26: 1149
- 8k Baumann M, Baxendale IR, Ley SV, Smith CD, Tranmer GK. Org. Lett. 2006; 8: 5231
- 8l El Kaim L, Grimaud L, Schiltz A. Tetrahedron Lett. 2009; 50: 5235
- 8m Dos Santos A, El Kaim L, Grimaud L, Ronsseray C. Chem. Commun. 2009; 3907
- 8n Ma Y, Yan Z, Bian C, Li K, Zhang X, Wang M, Gao X, Zhang H, Lei A. Chem. Commun. 2015; 51: 10524
- 8o Liao J.-Y, Ni Q, Zhao Y. Org. Lett. 2017; 19: 4074
- 8p Pan J, Li X, Lin F, Liu J, Jiao N. Chem 2018; 4: 1427
- 9 5-Pentyl-4-tosyl-1,3-oxazole (3a); Typical Procedure CH2Cl2 (4 mL) was added to a 10 mL vial charged with isocyanide 1a (0.4 mmol, 1.0 equiv) at r.t. under N2. Siloxyalkyne 2a (0.48 mmol, 1.2 equiv) and a 1.0 M solution of TBAF in THF (0.4 mmol, 1.0 equiv) were added sequentially, and the mixture was stirred at r.t. for 4 h. Next, H2O (5 mL) was added, and the layers were separated. The aqueous layer was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated. The residue was purified by chromatography [silica gel, hexanes–EtOAc (10:1)] to give a pale-yellow semisolid; yield: 97.9 mg (83%). IR (neat): 3134, 3057, 2932, 2865, 1589, 1516, 1455, 1325, 1145, 1084 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.89 (d, J = 8.3 Hz, 2 H), 7.71 (s, 1 H), 7.32 (d, J = 8.0 Hz, 2 H), 3.08 (t, J = 7.6 Hz, 2 H), 2.40 (s, 3 H), 1.75–1.62 (m, 2 H), 1.38–1.26 (m, 4 H), 0.92–0.83 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 157.2, 149.4, 144.7, 137.3, 135.1, 129.7, 127.9, 31.0, 27.5, 25.2, 22.1, 21.5, 13.8. HRMS (CI): m/z [M + H]+ calcd for C15H20NO3S: 294.1164; found: 294.1158.
- 10 CCDC 1869561 contains the supplementary crystallographic data for compound 3i. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
For reviews on siloxyalkynes, see:
For selected examples of cyclization reactions of siloxyalkynes, see:
We are aware of only two examples, see:
For reviews on isocyanides, see:
For other examples of oxazole synthesis, including the use of isocyanides, see: