Synlett, Table of Contents CC BY-ND-NC 4.0 · Synlett 2019; 30(04): 493-498DOI: 10.1055/s-0037-1610403 letter Copyright with the author Selective Phthalimido-N-oxyl (PINO)-Catalyzed C–H Cyanation of Adamantane Derivatives Jan-Philipp Berndt , Frederik R. Erb , Lukas Ochmann , Jaqueline Beppler , Peter R. Schreiner * Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany Email: prs@uni-giessen.de › Author Affiliations Recommend Article Abstract All articles of this category Published as part of the 30 Years SYNLETT – Pearl Anniversary Issue Abstract We present a new method for the selective C(sp3)–H cyanation of adamantane derivatives with PINO as the hydrogen abstracting reagent. A cyano radical is thereby transferred from p -toluenesulfonyl cyanide, allowing the cyanation of adamantane derivatives in up to 71% yield. The protocol presents a novel way to orthogonally functionalized adamantanes that are otherwise difficult to prepare. Mechanistic studies support the hypothesis of a radical pathway. Key words Key wordsadamantane - C–H activation - cyanation - N-hydroxyphthalimide - NHPI - PINO Full Text References References and Notes 1a Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022 1b Gunawan MA, Hierso J.-C, Poinsot D, Fokin AA, Fokina NA, Tkachenko BA, Schreiner PR. New J. Chem. 2014; 38: 28 2 Agnew-Francis KA, Williams CM. Adv. Synth. Catal. 2016; 358: 675 3a Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JE. P, Carlson RM. K, Fokin AA. Nature 2011; 477: 308 3b Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Dahl JE. P, Carlson RM. K, Schreiner PR. J. Am. Chem. Soc. 2012; 134: 13641 4 Randel JC, Niestemski FC, Botello-Mendez AR, Mar W, Ndabashimiye G, Melinte S, Dahl JE. P, Carlson RM. K, Butova ED, Fokin AA, Schreiner PR, Charlier J.-C, Manoharan HC. Nat. Commun. 2014; 5: 4877 5 Sedelmeier G, Sedelmeier J. CHIMIA Int. J. Chem. 2017; 71: 730 6a Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516 6b Guy L, Graciela A. Curr. Med. Chem. 2010; 17: 2967 7a Fleming FF. Nat. Prod. Rep. 1999; 16: 597 7b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902 8a Kukushkin VY, Pombeiro AJ. L. Chem. Rev. 2002; 102: 1771 8b Guérinot A, Reymond S, Cossy J. Eur. J. Org. Chem. 2012; 19 9a Ping Y, Ding Q, Peng Y. ACS Catal. 2016; 6: 5989 9b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049 9c Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948 10a Cho CH, Lee JY, Kim S. Synlett 2009; 81 10b Kim S, Song H.-J. Synlett 2002; 2110 11 Kim S, Lim CJ. Angew. Chem. 2002; 114: 3399 12a Chen M, Huang Z.-T, Zheng Q.-Y. Org. Biomol. Chem. 2015; 13: 8812 12b Wang Y.-F, Qiu J, Kong D, Gao Y, Lu F, Karmaker PG, Chen F.-X. Org. Biomol. Chem. 2015; 13: 365 12c Akula R, Xiong Y, Ibrahim H. RSC Adv. 2013; 3: 10731 12d Chowdhury R, Schörgenhumer J, Novacek J, Waser M. Tetrahedron Lett. 2015; 56: 1911 12e Kiyokawa K, Nagata T, Minakata S. Angew. Chem. Int. Ed. 2016; 128: 10614 13 Dai J.-J, Zhang W.-M, Shu Y.-J, Sun Y.-Y, Xu J, Feng Y.-S, Xu H.-J. Chem. Commun. 2016; 52: 6793 14 Le Vaillant F, Wodrich MD, Waser J. Chem. Sci. 2017; 8: 1790 15 Sun M.-X, Wang Y.-F, Xu B.-H, Ma X.-Q, Zhang S.-J. Org. Biomol. Chem. 2018; 16: 1971 16a Ma L, Chen W, Seidel D. J. Am. Chem. Soc. 2012; 134: 15305 16b Hari DP, König B. Org. Lett. 2011; 13: 3852 16c Rueping M, Zhu S, Koenigs RM. Chem. Commun. 2011; 47: 12709 16d Alagiri K, Prabhu KR. Org. Biomol. Chem. 2012; 10: 835 16e Wakaki T, Sakai K, Enomoto T, Kondo M, Masaoka S, Oisaki K, Kanai M. Chem. Eur. J. 2018; 24: 8051 17 Zhang W, Wang F, McCann SD, Wang D, Chen P, Stahl SS, Liu G. Science 2016; 353: 1014 18a Müller E, Huber H. Chem. Ber. 1963; 96: 670 18b Müller E, Huber H. Chem. Ber. 1963; 96: 2319 19 Hoshikawa T, Yoshioka S, Kamijo S, Inoue M. Synthesis 2013; 45: 874 20a Combe SH, Hosseini A, Song L, Hausmann H, Schreiner PR. Org. Lett. 2017; 19: 6156 20b Combe SH, Hosseini A, Parra A, Schreiner PR. J. Org. Chem. 2017; 82: 2407 20c Zhuk TS, Gunchenko PA, Korovai YY, Schreiner PR, Fokin AA. Theor. Exp. Chem. 2008; 44: 48 21a Melone L, Punta C. Beilstein J. Org. Chem. 2013; 9: 1296 21b Recupero F, Punta C. Chem. Rev. 2007; 107: 3800 21c Ishii Y, Sakaguchi S, Iwahama T. Adv. Synth. Catal. 2001; 343: 393 For selected NHPI-catalyzed reactions, see: 21d Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y. J. Org. Chem. 1995; 60: 3934 21e Kato S, Iwahama T, Sakaguchi S, Ishii Y. J. Org. Chem. 1998; 63: 222 22 An indirect way for the cyanation of benzylic positions was developed, using a NHPI-catalyzed nitroxylation, followed by substitution with sodium cyanide: Kamijo S, Amaoka Y, Inoue M. Tetrahedron Lett. 2011; 52: 4654 23 Schörgenhumer J, Waser M. Org. Chem. Front. 2016; 3: 1535 24 Zhou S, Addis D, Das S, Junge K, Beller M. Chem. Commun. 2009; 4883 25 Sakaguchi S, Hirabayashi T, Ishii Y. Chem. Commun. 2002; 516 26 Schwertfeger H, Würtele C, Schreiner PR. Synlett 2010; 493 27 Isozaki S, Nishiwaki Y, Sakaguchi S, Ishii Y. Chem. Commun. 2001; 1352 28a Ishii Y, Iwahama T, Sakaguchi S, Nakayama K, Nishiyama Y. J. Org. Chem. 1996; 61: 4520 28b Hara T, Iwahama T, Sakaguchi S, Ishii Y. J. Org. Chem. 2001; 66: 6425 28c Ishii Y, Kato S, Iwahama T, Sakaguchi S. Tetrahedron Lett. 1996; 37: 4993 28d Saha B, Koshino N, Espenson JH. J. Phys. Chem. A 2004; 108: 425 29 Bridson JN, Schriver MJ, Zhu S. Can. J. Chem. 1995; 73: 212 30 1-Cyano-3-methyladamantane (5) Yield 0.062 g (0.359 mmol, 71%). Rf = 0.40 (n-hexane/EtOAc, 15:1). HRMS (ESI): m/z calcd for C12H17NNa+: 198.1253; found: 198.1254 [M + Na+]+. IR (ATR): 2906, 2850, 2232, 1532, 1456, 1360, 1343, 1162, 1112, 974, 923, 756, 692 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.09–2.02 (m, 2 H), 2.00–1.87 (m, 4 H), 1.73 (s, 2 H), 1.64–1.57 (m, 2 H), 1.49–1.41 (m, 4 H), 0.84 (s, 3 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 125.2 (C), 46.4 (C), 42.9 (CH2), 39.4 (2 CH2), 35.1 (2 CH2), 31.0 (CH2), 30.5 (C), 29.8 (CH3), 27.9 (2 CH) ppm. 31 1-Cyano-3,5-dimethylcyanoadamantane (6) Yield 0.031 g (0.164 mmol, 33%). Rf = 0.43 (n-hexane/EtOAc, 15:1). HRMS (ESI): m/z calcd for C13H19NNa+: 212.1410; found: 212.1412 [M + Na+]+. IR (ATR): 2902, 2848, 2235, 1455, 1378, 1359, 1342, 1232, 1144, 965, 934, 912, 772, 733 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.11 (hept, J = 3.1 Hz, 1 H), 1.86–1.83 (m, 2 H), 1.70–1.59 (m, 4 H), 1.41–1.31 (m, 4 H), 1.17 (s, 2 H), 0.85 (s, 6 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 125.1 (C), 50.1 (CH2), 45.9 (2 CH2), 42.2 (2 CH2), 38.7 (CH2), 31.8 (C), 30.6 (C), 30.1 (2 CH3), 28.5 (2 CH) ppm. 32 1-Cyano-3,5,7-trimethyladamantane (7) Yield 0.028 g (0.138 mmol, 28%). Rf = 0.71 (n-hexane/EtOAc, 5:1). HRMS (ESI): m/z calcd for C14H21NNa+ m/z = 226.1566; found: 226.1563 [M + Na+]+. IR (ATR): 2948, 2918, 2865, 2843, 2230, 1455, 1377, 1358, 1257, 1233, 912, 788 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.58 (s, 6 H), 1.16–1.02 (m, 6 H), 0.86 (s, 9 H) ppm.13C NMR (101 MHz, CDCl3): δ = 125.0 (C), 49.5 (3 CH2), 45.3 (3 CH2), 32.5 (C), 31.5 (3 C), 29.7 (3 CH3) ppm. 33 Olah GA, Farooq O, Surya Prakash GK. Synthesis 1985; 1140 34 1-Cyanoadamantane-3,5-acetic Acid Methyl Ester (8) Yield 0.054 g (0.177 mmol, 35%). Rf = 0.23 (n-hexane/EtOAc, 3:1). HRMS (ESI): m/z calcd for C17H23NNaO4 +: 328.1519; found: 328.1516 [M + Na+]+. IR (ATR): = 2910, 2857, 2235, 1731, 1438, 1330, 1242, 1162, 1128, 1057, 1022, 851 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.65 (s, 6 H), 2.21–2.17 (m, 1 H), 2.16 (s, 4 H), 1.93–1.87 (m, 4 H), 1.87–1.80 (m, 2 H), 1.62–1.55 (m, 2 H), 1.55–1.46 (m, 4 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 171.2 (2 C), 124.2 (C), 51.5 (2 CH3), 47.1 (2 CH2), 45.6 (CH2), 43.4 (2 CH2), 39.8 (2 CH2), 38.5 (CH2), 33.1 (2 C), 31.6 (C), 28.0 (CH) ppm. 35 1-Cyanoadamantane-3-acetic Acid Methyl Ester (9) Yield 0.039 g (0.149 mmol, 30%). Rf = 0.08 (n-pentane/Et2O, 10:1). HRMS (ESI): m/z calcd for C16H23NNaO2 +: 284.1621; found: 284.1623 [M + Na+]+. IR (ATR): 2950, 2924, 2900, 2866, 2849, 2232, 1735, 1456, 1356, 1312, 1231, 1192, 1147, 1087, 1012 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.66 (s, 3 H), 2.16 (s, 2 H), 1.76 (s, 2 H), 1.62 (s, 4 H), 1.33–1.20 (m, 4 H), 1.20–1.10 (m, 2 H), 0.88 (s, 6 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 171.5 (C), 124.5 (C), 51.5 (CH3), 49.4 (CH2), 47.2 (2 CH2), 47.0 (CH2), 45.2 (2 CH2), 43.0 (CH2), 34.06 (C), 32.37 (C), 31.4 (2 C), 29.7 (2 CH3) ppm. 36 1-Cyano-3-bromoadamantane (10) Yield 0.040 g (0.167 mmol, 34%). Rf = 0.16 (n-pentane/Et2O, 20:1). HRMS (ESI): m/z calcd for C11H14BrNNa+: 262.0202; 262.0204 [M + Na+]+. IR (ATR): 2948, 2925, 2862, 2228, 1455, 1344, 1330, 1311, 1245, 1121, 1097, 966, 990, 822, 726, 677, 457 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.58 (s, 2 H), 2.35–2.26 (m, 4 H), 2.25–2.17 (m, 2 H), 2.04 (d, J = 2.9 Hz, 4 H), 1.75–1.69 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 123.2 (C), 59.6 (C), 50.1 (CH2), 47.4 (2 CH2), 38.4 (2 CH2), 33.9 (CH2), 33.5 (C), 31.0 (2 CH) ppm. 37 Chanmiya Sheikh M, Takagi S, Ogasawara A, Ohira M, Miyatake R, Abe H, Yoshimura T, Morita H. Tetrahedron 2010; 66: 2132 38 1-Cyano-3-phenyladamantane (11) Yield 0.056 g (0.236 mmol, 47%). Rf = 0.23 (n-pentane/Et2O, 20:1). HRMS (ESI): m/z calcd for C17H19NNa+: 260.1410; 260.1411 [M + Na+]+. IR (ATR): = 2926, 2853, 2234, 1599, 1498, 1447, 1343, 1261, 1106, 1080, 1031, 978, 758, 700, 532 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.39–7.31 (m, 4 H), 7.25–7.20 (m, 1 H), 2.27–2.23 (m, 2 H), 2.20 (s, 2 H), 2.12–2.04 (m, 4 H), 1.95–1.89 (m, 4 H), 1.80–1.73 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 148.6 (C), 128.6 (2 CH), 126.5 (CH), 125.0 (CN), 124.7 (2 CH), 45.1 (CH2), 41.6 (2 CH2), 39.3 (2 CH2), 36.0 (C), 35.1 (CH2), 31.5 (C), 28.1 (2 CH) ppm. 39 1-Cyano-3-ethynyladamantane (12) Yield 0.038 g (0.204 mmol, 41%). Rf = 0.56 (n-hexane/EtOAc, 1:1). HRMS (ESI): m/z calcd for C13H15NNa+: 208.1097; 208.1095 [M + Na+]+. IR (ATR): 3261, 2917, 2857, 2236, 2110, 1726, 1579, 1451, 1345, 1260, 1088, 1014, 869, 795, 688, 50 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.15 (s, 1 H), 2.14 (s, 2 H), 2.13–2.09 (m, 2 H), 1.99 (d, J = 3.0 Hz, 4 H), 1.89–1.84 (m, 4 H), 1.70–1.66 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 124.3 (C), 90.2 (C), 68.5 (CH), 44.4 (CH2), 41.3 (2 CH2), 39.0 (2 CH2), 34.6 (CH2), 30.5 (C), 29.2(C), 27.2 (2 CH). 40 3-Cyanoadamantane-1-carboxylic Acid Methyl Ester (13) Yield 0.055 g (0.250 mmol, 50%). Rf = 0.47 (n-hexane/EtOAc, 3:1). HRMS (ESI): m/z calcd for C13H17NNaO2 +: 242.1152; 242.1149 [M + Na+]+. IR (ATR): 2952, 2915, 2859, 2229, 1720, 1480, 1446, 1346, 1323, 1265, 1240, 1192, 1151, 1125, 1106, 1029, 952, 866, 777, 747, 728, 570, 481, 445 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.67 (s, 3 H), 2.19–2.13 (m, 4 H), 2.04–1.96 (m, 4 H), 1.93–1.80 (m, 4 H), 1.70 (s, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 176.2 (C), 124.4 (C), 52.1 (CH3), 40.7 (CH2), 40.3 (C), 39.1 (2 CH2), 37.5 (2 CH2), 34.8 (CH2), 30.6 (C), 27.2 (2 CH). 41 1-O-(tert-Butyldiphenylsilyl)-3-cyanoadamantanol (14a) Yield 0.080 g (0.193 mmol, 39%). Rf = 0.39 (n-hexane/EtOAc, 15:1). HRMS (ESI): m/z calcd for C27H33NNaOSi+: 438.2224; found: 438.2226 [M + Na+]+. IR (ATR): 3071, 2931, 2858, 2235, 1590, 1472, 1455, 1428 1357, 1337, 1316, 1155, 1143, 1110, 1068, 975, 903, 821, 740, 702, 610, 503 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.74–7.70 (m, 4 H), 7.45–7.36 (m, 6 H), 2.09 (s, 2 H), 1.99 (s, 2 H), 1.84–1.73 (m, 4 H), 1.70–1.64 (m, 4 H), 1.50–1.37 (m, 2 H), 1.02 (s, 9 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 136.1 (4 CH), 135.7 (2 C), 129.7 (2 CH), 127.6 (4 CH), 124.2 (C), 71.0 (C), 47.5 (CH2), 44.3 (2 CH2), 38.8 (2 CH2), 34.4 (CH2), 33.0 (C), 29.9 (3 CH3), 27.1 (2 CH), 19.3 (C) ppm. 42 1-Cyano-3-acetamidoadamantane (15) Yield 0.024 g (0.110 mmol, 22%). Rf = 0.46 (CH2Cl2/MeOH, 20:1). HRMS (ESI): m/z calcd for C13H18N2NaO+: 241.1311; found: 241.1317 [M + Na+]+. IR (ATR): 3295, 3078, 2918, 2856, 2232, 1731, 1651, 1548, 1456, 1366, 1307, 1144, 1061, 1007, 702, 602, 541, 452 cm–1. 1H NMR (400 MHz, CDCl3): δ = 5.32 (s, 1 H), 2.35 (s, 2 H), 2.21 (s, 2 H), 2.11–2.06 (m, 2 H), 2.03–1.93 (m, 4 H), 1.92 (s, 3 H), 1.88–1.80 (m, 2 H), 1.67 (s, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 169.8 (C), 124.1 (C), 51.0 (C), 42.9(CH2), 40.3 (2 CH2), 39.0 (2 CH2), 34.8 (CH2), 31.8 (C), 28.5 (2 CH), 24.6 (CH3) ppm. 1-N-Adamantylphthalimide-3-cyano (16) Yield 0.033 g (0.108 mmol, 22%). Rf = 0.28 (n-hexane/EtOAc, 3:1). HRMS (ESI): m/z calcd for C19H18N2NaO2 +: 329.1261; found: 329.1262 [M + Na+]+. IR (ATR): 2926, 2863, 2226, 1768, 1703, 1611, 1468, 1361, 1341, 1313, 1155, 1111, 1070, 999, 980, 969, 870, 790, 715, 643, 532, 407 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.79–7.74 (m, 2 H), 7.72–7.66 (m, 2 H), 2.80 (s, 2 H), 2.58–2.46 (m, 4 H), 2.30 (s, 2 H), 2.14–1.98 (m, 4 H), 1.82–1.66 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 169.5 (2 C), 134.1 (2 CH), 131.8 (2 C), 124.01 (C), 123.0 (2 CH), 58.6 (C), 41.8 (CH2), 38.9 (2 CH2), 38.9 (2 CH2), 34.6 (CH2), 32.3 (C), 28.8 (2 CH) ppm. 1-Azido-3-cyano-adamantane (17) Yield 0.027 g (0.133 mmol, 27%). Rf = 0.13 (n-pentane/Et2O, 20:1). HRMS (ESI): m/z calcd for C11H14N4Na+: 225.1114; found: 225.1111 [M + Na+]+. IR (ATR): 2919, 2861, 2230, 2087, 1456, 1360, 1339, 1318, 1244, 1130, 1108, 997, 925, 872, 836, 714, 678, 561, 489 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.33–2.27 (m, 2 H), 2.04 (s, 2 H), 2.02–1.93 (m, 4 H), 1.84–1.76 (m, 4 H), 1.69–1.63 (m, 2 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 123.6 (C), 57.3 (C), 43.7 (CH2), 40.1 (2 CH2), 38.8 (2 CH2), 34.3 (CH2), 32.2 (C), 28.9 (2 CH) ppm. 43 4-Cyanodiamantane (18a) Rf = 0.23 (n-pentane/Et2O, 10:1). HRMS (ESI): m/z calcd for C15H19NNa+: 236.1410; found: 236.1411 [M + Na+]+. IR (ATR): 2908, 2884, 2847, 2228, 1440, 1377, 1358, 1314, 1258, 1126, 1090, 1047, 984, 902, 799, 572, 545, 462 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.03–1.97 (m, 6 H), 1.85 (s, 3 H), 1.83–1.79 (m, 1 H), 1.77–1.74 (m, 3 H), 1.73–1.69 (m, 6 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 125.5 (C), 40.9 (3 CH2), 37.6 (3 CH2), 36.4 (3 CH), 36.1 (3 CH), 28.8 (C), 25.4 (CH) ppm. 1-Cyanodiamantane (18m) Rf = 0.27 (n-pentane/Et2O, 10:1). HRMS (ESI): m/z calcd for C15H19NNa+: 236.1410; found: 236.1408 [M + Na+]+. IR (KBR): 2918, 2889, 2850, 2227, 1636, 1460, 1443, 1340, 1314, 1260, 1057, 1048, 984, 800, 615 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.23–2.15 (m, 2 H), 2.05–2.00 (m, 2 H), 2.00–1.92 (m, 3 H), 1.87 (s, 3 H), 1.71 (s, 9 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 124.6 (C), 41.4 (CH2), 39.0 (2 CH), 38.1 (C), 37.7 (CH2), 37.1 (2 CH2), 36.6 (2 CH), 36.3 (CH), 35.1 (2 CH2), 25.6 (CH), 25.0 (CH) ppm. 44 1-Cyano-3-diamantane Carboxylic Acid Methyl Ester (19m1) Rf = 0.13 (n-hexane/EtOAc, 10:1). HRMS (ESI): m/z calcd for C17H21NnaO2 +: 294.1465; found: 294.1467 [M + Na+]+. IR (ATR): 2909, 2890, 2858, 2227, 1726, 1463, 1433, 1280, 1254, 1228, 1215, 1133, 1115, 1068, 1033, 985, 889, 846, 790, 767, 739, 709, 632, 507 433, 422 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.68 (s, 3 H), 2.22 (s, 1 H), 2.20–2.16 (m, 3 H), 2.01–1.98 (m, 2 H), 1.97–1.94 (m, 2 H), 1.92–1.83 (m, 6 H), 1.77–1.73 (m, 4 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 176.5 (C), 123.6 (C), 52.1 (CH3), 42.1 (CH2), 39.1 (C), 38.8 (2 CH2), 38.5 (C), 38.2 (2 CH), 37.1 (CH2), 36.5 (2 CH), 35.3 (CH), 34.3 (2 CH2), 24.7 (CH) ppm. 1-Cyano-4-diamantane Carboxylic Acid Methyl Ester (19m2) Rf = 0.13 (n-hexane/EtOAc, 10:1). HRMS (ESI): m/z calcd for C17H21NnaO2 +: 294.1465; found: 294.1462 [M + Na+]+. IR (ATR): 2906, 2881, 2853, 2224, 1714, 1466, 1444, 1427, 1341, 1321, 1283, 1247, 1221, 1142, 1123, 1091, 1072, 1060, 1045, 1012, 980, 949, 883, 860, 814, 787, 758, 744, 698, 628, 566, 543, 519, 490, 427 cm–1. 1H NMR (400 MHz, CDCl3): δ = 3.67 (s, 3 H), 2.34 (s, 1 H), 2.31 (s, 1 H), 2.10–2.03 (m, 4 H), 1.96 (q, J = 3.1 Hz, 1 H), 1.92–1.90 (m, 1 H), 1.89–1.82 (m, 6 H), 1.77–1.72 (m, 4 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 177.1 (C), 123.9 (C), 52.0 (CH3), 40.8 (CH2), 39.4 (CH2), 38.9 (2 CH), 38.4 (C), 37.3 (C), 36.5 (2 CH2), 36.5 (2 CH2), 36.1 (CH), 35.6 (2 CH), 25.3 (CH) ppm. 45a Glass RW, Martin TW. J. Am. Chem. Soc. 1970; 92: 5084 45b Fokin AA, Peleshanko SA, Gunchenko PA, Gusev DV, Schreiner PR. Eur. J. Org. Chem. 2000; 3357 46 Mella M, Freccero M, Soldi T, Fasani E, Albini A. J. Org. Chem. 1996; 61: 1413 47 PINO-Catalyzed Cyanations of Adamantane Derivatives – General Procedure 1 equiv substrate, 2 equiv TsCN, 1 equiv CAN, 1 equiv Li2CO3, 0.2 equiv NHPI and 5 mL DCE were stirred for 16 h at 75 °C. The reactions mixture was allowed to cool down to room temperature and filtered over silica gel (50 mL EtOAc, 50 mL MeCN, 50 mL EtOAc). Supplementary Material Supplementary Material Supporting Information