Synthesis 2019; 51(06): 1319-1328
DOI: 10.1055/s-0037-1610405
short review
© Georg Thieme Verlag Stuttgart · New York

40 Years of Hydrogen–Deuterium Exchange Adjacent to Heteroatoms: A Survey

Alessia Michelotti
a   CortecNet, 15-17 Rue des Tilleuls, 78960, Voisins-le-Bretonneux, France   eMail: mroche@cortecnet.com
b   Institut Lavoisier de Versailles, UMR 8180 CNRS, Université de Versailles Saint-Quentin-en-Yvelines, 78035, Versailles, France
,
a   CortecNet, 15-17 Rue des Tilleuls, 78960, Voisins-le-Bretonneux, France   eMail: mroche@cortecnet.com
› Institutsangaben
A.M. thanks the Research Executive Agency (REA), Marie Sklodowska-Curie Innovative Training Network for a Ph.D. fellowship (EUROPOL project, grant number 642773).
Weitere Informationen

Publikationsverlauf

Received: 31. August 2018

Accepted after revision: 30. Oktober 2018

Publikationsdatum:
09. Januar 2019 (online)


Abstract

Deuteration of bioactive molecules is gaining more and more attention, especially after the approval of the first deuterated drug (Austedo™) by the US Food and Drug Administration (FDA). Not only is deuteration important for drug development, the amount of deuterium in a molecule is critical for the production of standards in mass spectrometry and the selectivity of the deuteration is mandatory for NMR applications. Very frequently, the molecules involved in these applications contain several heteroatoms. It has been demonstrated that oxygen-, nitrogen-, and more recently, sulfur-containing molecules can be easily deuterated at the α position leading to high deuterium incorporation. In this review we will focus our attention on the historical background and the recent progress made on heteroatom-directed deuteration, with particular attention on the catalysts and the mechanisms that drive such transformations.

1 Introduction

2 Oxygen-Directed Deuteration

3 Nitrogen-Directed Deuteration

4 Sulfur-Directed Deuteration

5 Conclusion

 
  • References

  • 1 Urey HC, Brickwedde FG, Murphy GM. Phys. Rev. 1932; 39: 164
  • 2 Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
  • 3 Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics 2012; 11: O111.016717
  • 4 Thompson A, Schäfer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C. Anal. Chem. 2003; 75: 1895
  • 5 Hsu J.-L, Huang S.-Y, Chow N.-H, Chen S.-H. Anal. Chem. 2003; 75: 6843
  • 6 Chahrour O, Cobice D, Malone J. J. Pharm. Biomed. Anal. 2015; 113: 2
  • 7 Ciccimaro E, Blair IA. Bioanalysis 2010; 2: 311
  • 8 Fan TW.-M, Lorkiewicz PK, Sellers K, Moseley HN. B, Higashi RM, Lane AN. Pharmacol. Ther. 2012; 133: 366
  • 9 Chokkathukalam A, Kim D.-H, Barrett MP, Breitling R, Creek DJ. Bioanalysis 2014; 6: 511
  • 10 Gant TG. J. Med. Chem. 2014; 57: 3595
  • 11 Mullard A. Nat. Rev. Drug Discovery 2016; 15: 219
  • 12 Harbeson SL, Tung RD. Annu. Rep. Med. Chem. 2011; 46: 403
  • 13 Schmidt C. Nat. Biotechnol. 2017; 35: 493
  • 14 Corey EJ, Link JO. Tetrahedron Lett. 1989; 30: 6275
  • 15 Miyazaki D, Nomura K, Ichihara H, Ohtsuka Y, Ikeno T, Yamada T. New J. Chem. 2003; 27: 1164
  • 16 Midland MM, Greer S, Tramontano A, Zderic SA. J. Am. Chem. Soc. 1979; 101: 2352
  • 17 Yamada I, Noyori R. Org. Lett. 2000; 2: 3425
  • 18 Szostak M, Spain M, Procter DJ. Org. Lett. 2014; 16: 5052
  • 19 Han M, Ma X, Yao S, Ding Y, Yan Z, Adijiang A, Wu Y, Li H, Zhang Y, Lei P, Ling Y, An J. J. Org. Chem. 2017; 82: 1285
  • 20 Ding Y, Luo S, Adijiang A, Zhao H, An J. J. Org. Chem. 2018; 83: 12269
  • 21 Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
  • 22 Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
  • 23 Shen H, Liu Y, Tian X, Zhang X, Zhang Y. ChemistrySelect 2018; 3: 8724
  • 24 Koniarczyk JL, Hesk D, Overgard A, Davies IW, McNally A. J. Am. Chem. Soc. 2018; 140: 1990
  • 25 Smarun AV, Petković M, Shchepinov MS, Vidović D. J. Org. Chem. 2017; 82: 13115
  • 26 Erdogan G, Grotjahn DB. Top. Catal. 2010; 53: 1055
  • 27 Faller JW, Felkin H. Organometallics 1985; 4: 1488
  • 28 Di Giuseppe A, Castarlenas R, Pérez-Torrente JJ, Lahoz FJ, Polo V, Oro LA. Angew. Chem. Int. Ed. 2011; 50: 3938
  • 29 Sharma R, Strelevitz TJ, Gao H, Clark AJ, Schildknegt K, Obach RS, Ripp SL, Spracklin DK, Tremaine LM, Vaz AD. N. Drug Metab. Dispos. 2012; 40: 625
  • 30 Gu H, Wang J, Aubry A.-F, Jiang H, Zeng J, Easter J, Wang J, Dockens R, Bifano M, Burrell R, Arnold ME. Anal. Chem. 2012; 84: 4844
  • 31 Regen SL. J. Org. Chem. 1974; 39: 260
  • 32 Koch HJ, Stuart RS. Carbohydr. Res. 1977; 59: C1
  • 33 Harness J, Hughes NA. J. Chem. Soc., Perkin Trans. 1 1972; 38
  • 34 Cioffi EA, Prestegard JH. Tetrahedron Lett. 1986; 27: 415
  • 35 Cioffi EA, Willis WS, Suib SL. Langmuir 1988; 4: 697
  • 36 Cioffi EA, Willis WS, Suib SL. Langmuir 1990; 6: 404
  • 37 Cioffi EA. Tetrahedron Lett. 1996; 37: 6231
  • 38 Cioffi EA, Bell RH, Le B. Tetrahedron: Asymmetry 2005; 16: 471
  • 39 Bokatzian-Johnson SS, Maier ML, Bell RH, Alston KE, Le BY, Cioffi EA. J. Labelled Compd. Radiopharm. 2007; 50: 380
  • 40 Sajiki H, Kurita T, Esaki H, Aoki F, Maegawa T, Hirota K. Org. Lett. 2004; 6: 3521
  • 41 Fujiwara Y, Iwata H, Sawama Y, Monguchi Y, Sajiki H. Chem. Commun. 2010; 46: 4977
  • 42 Sawama Y, Yabe Y, Iwata H, Fujiwara Y, Monguchi Y, Sajiki H. Chem. Eur. J. 2012; 18: 16436
  • 43 Takahashi M, Oshima K, Matsubara S. Chem. Lett. 2005; 34: 192
  • 44 Maegawa T, Fujiwara Y, Inagaki Y, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2008; 350: 2215
  • 45 Bossi G, Putignano E, Rigo P, Baratta W. Dalton Trans. 2011; 40: 8986
  • 46 Khaskin E, Milstein D. ACS Catal. 2013; 3: 448
  • 47 Balzarek C, Weakley TJ. R, Tyler DR. J. Am. Chem. Soc. 2000; 122: 9427
  • 48 Breno KL, Tyler DR. Organometallics 2001; 20: 3864
  • 49 Bai W, Lee K.-H, Tse SK. S, Chan KW, Lin Z, Jia G. Organometallics 2015; 34: 3686
  • 50 Chatterjee B, Gunanathan C. Org. Lett. 2015; 17: 4794
  • 51 Zhang L, Nguyen DH, Raffa G, Desset S, Paul S, Dumeignil F, Gauvin RM. Catal. Commun. 2016; 84: 67
  • 52 Kar S, Goeppert A, Sen R, Kothandaraman J, Prakash GK. S. Green Chem. 2018; 20: 2706
  • 53 Hamid MH. S. A, Slatford PA, Williams JM. J. Adv. Synth. Catal. 2007; 349: 1555
  • 54 Maeda M, Ogawa O, Kawazoe Y. Chem. Pharm. Bull. 1977; 25: 3329
  • 55 Alexakis E, Hickey MJ, Jones JR, Kingston LP, Lockley WJ. S, Mather AN, Smith T, Wilkinson DJ. Tetrahedron Lett. 2005; 46: 4291
  • 56 Neubert L, Michalik D, Bähn S, Imm S, Neumann H, Atzrodt J, Derdau V, Holla W, Beller M. J. Am. Chem. Soc. 2012; 134: 12239
  • 57 Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Chem. Rev. 2010; 110: 2294
  • 58 Pieters G, Taglang C, Bonnefille E, Gutmann T, Puente C, Berthet J.-C, Dugave C, Chaudret B, Rousseau B. Angew. Chem. Int. Ed. 2014; 53: 230
  • 59 Maegawa T, Akashi A, Esaki H, Aoki F, Sajiki H, Hirota K. Synlett 2005; 845
  • 60 Jere FT, Miller DJ, Jackson JE. Org. Lett. 2003; 5: 527
  • 61 Taglang C, Martínez-Prieto LM, del Rosal I, Maron L, Poteau R, Philippot K, Chaudret B, Perato S, Lone AS, Puente C, Dugave C, Rousseau B, Pieters G. Angew. Chem. Int. Ed. 2015; 54: 10474
  • 62 Moozeh K, So SM, Chin J. Angew. Chem. Int. Ed. 2015; 54: 9381
  • 63 Hale LV. A, Szymczak NK. J. Am. Chem. Soc. 2016; 138: 13489
  • 64 Bhatia S, Spahlinger G, Boukhumseen N, Boll Q, Li Z, Jackson JE. Eur. J. Org. Chem. 2016; 4230
  • 65 Michelotti A, Rodrigues F, Roche M. Org. Process Res. Dev. 2017; 21: 1741
  • 66 Taglang C, Korenchan DE, von Morze C, Yu J, Najac C, Wang S, Blecha JE, Subramaniam S, Bok R, VanBrocklin HF, Vigneron DB, Ronen SM, Sriram R, Kurhanewicz J, Wilson DM, Flavell RR. Chem. Commun. 2018; 54: 5233
  • 67 Chatterjee B, Krishnakumar V, Gunanathan C. Org. Lett. 2016; 18: 5892
  • 68 Loh YY, Nagao K, Hoover AJ, Hesk D, Rivera NR, Colletti SL, Davies IW, MacMillan DW. C. Science 2017; 358: 1182
  • 69 Hu Y, Liang L, Wei W, Sun X, Zhang X, Yan M. Tetrahedron 2015; 71: 1425
  • 70 Gao L, Perato S, Garcia-Argote S, Taglang C, Martínez-Prieto LM, Chollet C, Buisson D.-A, Dauvois V, Lesot P, Chaudret B, Rousseau B, Feuillastre S, Pieters G. Chem. Commun. 2018; 54: 2986