RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml

CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1171-1177
DOI: 10.1055/s-0037-1610413
DOI: 10.1055/s-0037-1610413
feature
Bromine-Radical-Mediated Site-Selective Allylation of C(sp3)–H Bonds
This work was supported by Grants-in-Aid for Scientific Research (A) (no. 26248031) from JSPS and Scientific Research on Innovative Areas 2707 Middle Molecular Strategy (no. 15H05850) from MEXT.Weitere Informationen
Publikationsverlauf
Received: 12. Oktober 2018
Accepted after revision: 26. November 2018
Publikationsdatum:
07. Januar 2019 (online)

Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
The C(sp3)–H allylation of alkanes is investigated by using allyl bromides under radical reaction conditions. In many cases, methine C–H allylation preceded methylene and methyl C–H allylation with complete or a high degree of site selectivity. The C–H allylation of allylic compounds, such as allylbenzene, gives 1,5-dienes with the SH2′ reactions of the allyl radicals occurring at the less hindered carbon.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610413.
- Supporting Information
-
References
- 1a Zhou M, Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875
- 1b Che C.-M, Lo VK.-Y, Zhou C.-Y, Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
- 1c Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc. Chem. Res. 2012; 45: 826
- 1d Liu W, Groves JT. Acc. Chem. Res. 2015; 48: 1727
- 1e Hartwig JF, Larsen MA. ACS. Cent. Sci. 2016; 2: 281
- 1f C–H Activation . In Topics in Current Chemistry . Vol. 292. Yu J.-Q, Shi Z. Springer-Verlag; Berlin: 2010
- 1g Milan M, Salamone M, Costas M, Bietti M. Acc. Chem. Res. 2018; 51: 1984
- 1h White MC, Zhao J. J. Am. Chem. Soc. 2018; 140: 13988
- 2a Adams AM, Du Bois J, Malik HA. Org. Lett. 2015; 17: 6066
- 2b Cuthbertson JD, MacMillan DW. C. Nature 2015; 519: 74
- 2c Lee M, Sanford MS. J. Am. Chem. Soc. 2015; 137: 12796
- 2d Miao J, Yang K, Kurek M, Ge H. Org. Lett. 2015; 17: 3738
- 2e Huang X, Groves JT. ACS Catal. 2016; 6: 751
- 2f Chu JC. K, Rovis T. Nature 2016; 539: 272
- 2g Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
- 2h Mbofana CT, Chong E, Lawniczak J, Sanford MS. Org. Lett. 2016; 18: 4258
- 2i Liu Y, Ge H. Nat. Chem. 2017; 9: 26
- 2j Nanjo T, de Lucca EC. Jr, White MC. J. Am. Chem. Soc. 2017; 139: 14586
- 2k Liao K, Pickel TC, Boyarskikh V, Bacsa J, Musaev DG, Davies HM. L. Nature 2017; 551: 609
- 3a Okada M, Fukuyama T, Yamada K, Ryu I, Ravelli D, Fagnoni M. Chem. Sci. 2014; 5: 2893
- 3b Okada M, Yamada K, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. J. Org. Chem. 2015; 80: 9365
- 3c Yamada K, Okada M, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Org. Lett. 2015; 17: 1292
- 3d Yamada K, Fukuyama T, Fujii S, Ravelli D, Fagnoni M, Ryu I. Chem. Eur. J. 2017; 23: 8615
- 3e Quattrini MC, Fujii S, Yamada K, Fukuyama T, Ravelli D, Fagnoni M, Ryu I. Chem. Commun. 2017; 53: 2335
- 3f Fukuyama T, Nishikawa T, Yamada K, Ravelli D, Fagnoni M, Ryu I. Org. Lett. 2017; 19: 6436
- 3g Fukuyama T, Yamada K, Nishikawa T, Ravelli D, Fagnoni M, Ryu I. Chem. Lett. 2018; 47: 207
- 4 For a perspective, see: Ravelli D, Fagnoni M, Fukuyama T, Nishikawa T, Ryu I. ACS Catal. 2018; 8: 701
- 5 Manabe Y, Fukase K, Matsubara H, Hino Y, Fukuyama T, Ryu I. Chem. Eur. J. 2014; 20: 12750
- 6a Kharasch MS, Hered W, Mayo FR. J. Org. Chem. 1941; 6: 818
- 6b Jiang X, Shen M, Tang Y, Li C. Tetrahedron Lett. 2005; 46: 487
- 6c Russell GA, Brown HC. J. Am. Chem. Soc. 1955; 77: 4025
- 6d Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
- 7a Tanko JM, Sadeghipour M. Angew. Chem. Int. Ed. 1999; 38: 159
- 7b Struss JA, Sadeghipour M, Tanko JM. Tetrahedron Lett. 2009; 50: 2119
- 8a Kippo T, Fukuyama T, Ryu I. Org. Lett. 2010; 12: 4006
- 8b Kippo T, Fukuyama T, Ryu I. Org. Lett. 2011; 13: 3864
- 8c Kippo T, Hamaoka K, Ryu I. J. Am. Chem. Soc. 2013; 135: 632
- 8d Kippo T, Ryu I. Chem. Commun. 2014; 50: 5993
- 8e Kippo T, Kimura Y, Maeda A, Matsubara H, Fukuyama T, Ryu I. Org. Chem. Front. 2014; 1: 755
- 8f Kippo T, Hamaoka K, Ueda M, Fukuyama T, Ryu I. Tetrahedron 2016; 72: 7866
- 8g Kippo T, Kimura Y, Ueda M, Ryu I. Synlett 2017; 28: 1733
- 8h Kippo T, Hamaoka K, Ueda M, Fukuyama T, Ryu I. Org. Lett. 2017; 19: 5198
- 9a Xiang J, Evarts J, Rivkin A, Curran DP, Fuchs PL. Tetrahedron Lett. 1998; 39: 4163
- 9b Kamijo S, Kamijo K, Maruoka K, Murafuji T. Org. Lett. 2016; 18: 6516
- 9c Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed. 2016; 55: 1872
- 10a Patil S, Chen L, Tanko JM. Eur. J. Org. Chem. 2014; 502
- 10b Xuan J, Zeng T.-T, Feng Z.-J, Deng Q.-H, Chen J.-R, Lu L.-Q, Xiao W.-J, Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
- 10c Li Y, Zhang J, Li D, Chen Y. Org. Lett. 2018; 20: 3296 ; and reference 7 cited therein
- 11 In the reaction shown in Scheme 2 a, decrease of the amount of isooctane from 5 mL to 2.5 mL resulted in a decrease of the yields of products 3aa (39%) and 4aa (6%).
- 12 Sumino S, Fusano A, Ryu I. Org. Lett. 2013; 15: 2826
- 13 Lüthy M, Darmency V, Renaud P. Eur. J. Org. Chem. 2011; 547
- 14 Lévêque C, Chenneberg L, Corcé V, Ollivier C, Fensterbank L. Chem. Commun. 2016; 52: 9877
- 15 Corcé V, Chamoreau L.-M, Derat E, Goddard J.-P, Ollivier C, Fensterbank L. Angew. Chem. Int. Ed. 2015; 54: 11414
- 16 Reichle MA, Breit B. Angew. Chem. Int. Ed. 2012; 51: 5730
For reviews on site-selective C(sp3)–H functionalization, see:
For selected recent papers on site-selective C(sp3)–H functionalization, see:
For site-selective radical C–H bromination, see:
For radical allylations of alkane C(sp3)–H bonds, see:
For radical allylations of benzylic C(sp3)–H bonds and α-C(sp3)–H bonds of heteroatoms (N, O), see: