Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(18): 3731-3737
DOI: 10.1055/s-0037-1610443
DOI: 10.1055/s-0037-1610443
paper
[3+2] Cycloaddition of N-Aminopyridines and Perfluoroalkynylphosphonates: Facile Synthesis of Perfluoroalkylated Pyrazolo[1,5-a]pyridines Containing a Phosphonate Moiety
The authors are grateful to the National Natural Science Foundation of China (Grant Nos. 21672138, 21542005, 21272152) for their financial support.Further Information
Publication History
Received: 28 April 2018
Accepted after revision: 31 May 2018
Publication Date:
23 July 2018 (online)
§ With equal contribution to this work.
Abstract
1,3-Zwitterions generated from N-aminopyridines in the presence of base are trapped by perfluoroalkynylphosphonates to yield a variety of perfluoroalkylated pyrazolo[1,5-a]pyridine derivatives bearing a phosphonate group. The salient features of these [3+2] cycloadditions include operational simplicity, good tolerance of functional groups, and good to excellent yields at room temperature.
Key words
N-aminopyridine - perfluoroalkynylphosphonate - pyrazolo[1,5-a]pyridine - [3+2] cycloaddition - synthetic methodologySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610443.
- Supporting Information
-
References
- 1a Nishigaya Y. Umei K. Saito Y. Watanabe H. Kondo T. Kondo A. Kawamura N. Tatani K. Kohno Y. Tanaka N. Seto S. Bioorg. Med. Chem. Lett. 2017; 27: 4044
- 1b Mikami S. Sasaki S. Asano Y. Ujikawa O. Fukumoto S. Nakashima K. Oki H. Kamiguchi N. Imada H. Iwashita H. Taniguchi T. J. Med. Chem. 2017; 60: 7658
- 1c Manjunatha UH. Vinayak S. Zambriski JA. A. Chao T. Sy T. Noble CG. Bonamy GM. C. Kondreddi RR. Zou B. Gedeck P. Brooks CF. Herbert GT. Sateriale A. Tandel J. Noh S. Lakshminarayana SB. Lim SH. Goodman LB. Bodenreider C. Feng G. Zhang L. Blasco F. Wagner J. Leong FJ. Striepen B. Diagana TT. Nature (London) 2017; 546: 376
- 1d Zhou H. Wang J. Yao B. Wong S. Djakovic S. Kumar B. Rice J. Valle E. Soriano F. Menon M. Madriaga A. Soly SK. Kumar A. Parlati F. Yakes FM. Shawver L. Moigne RL. Anderson DJ. Rolfe M. Wustrow D. J. Med. Chem. 2015; 58: 9480
- 1e Manach CL. Paquet T. Brunschwig C. Njoroge M. Han Z. Cabrera DG. Bashyam S. Dhinakaran R. Taylor D. Reader J. Botha M. Churchyard A. Lauterbach S. Coetzer TL. Birkholtz L. Meister S. Winzeler EA. Waterson D. Witty MJ. Wittlin S. Jiménez-Díaz M. Martínez MS. Ferrer S. Angulo-Barturen I. Street LJ. Chibale K. J. Med. Chem. 2015; 58: 8713
- 1f Kendall JD. Marshall AJ. Giddens AC. Tsang KY. Boyd M. Frédérick R. Lill CL. Lee W. Kolekar S. Chao M. Malik A. Yu S. Chaussade C. Buchanan CM. Rewcastle GW. Baguley BC. Flanagan JU. Denny WA. Shepherd PR. Med. Chem. Commun. 2014; 5: 41
- 1g Möller D. Kling RC. Skultety M. Leuner K. Hübner H. Gmeiner P. J. Med. Chem. 2014; 57: 4861
- 1h Tai VW. Garrido D. Price DJ. Maynard A. Pouliot JJ. Xiong Z. Seal JW. Creech KL. Kryn LH. Baughman TM. Peat AJ. Bioorg. Med. Chem. Lett. 2014; 24: 2288
- 1i Xiong Y. Ullman B. Choi JK. Cherrier M. Strah-Pleynet S. Decaire M. Feichtinger K. Frazer JM. Yoon WH. Whelan K. Sanabria EK. Grottick AJ. Al-Shamma H. Semple G. Bioorg. Med. Chem. Lett. 2012; 22: 1870
- 1j Koike T. Takai T. Hoashi Y. Nakayama M. Kosugi Y. Nakashima M. Yoshikubo S. Hirai K. Uchikawa O. J. Med. Chem. 2011; 54: 4207
- 1k Cheung M. Harris PA. Badiang JG. Peckham GE. Chamberlain SD. Alberti MJ. Jung DK. Harris SS. Bramson NH. Epperly AH. Stimpson SA. Peel MR. Bioorg. Med. Chem. Lett. 2008; 18: 5428
- 1l Tang J. Wang B. Wu T. Wan J. Tu Z. Njire M. Wan B. Franzblauc SG. Zhang T. Lu X. Ding K. ACS Med. Chem. Lett. 2015; 6: 814
- 2a Ravi C. Samanta S. Mohan DC. Reddy NN. K. Adimurthy S. Synthesis 2017; 49: 2513
- 2b Knouse KW. Ator LE. Beausoleil LE. Hauseman ZJ. Casaubon RL. Ott GR. Tetrahedron Lett. 2017; 58: 202
- 2c Ravi C. Qayum A. Mohan DC. Singh SK. Adimurthy S. Eur. J. Med. Chem. 2017; 126: 277
- 2d Halskov KS. Roth HS. Ellman JA. Angew. Chem. Int. Ed. 2017; 56: 9183
- 2e Alam K. Kim SM. Kim DJ. Park JK. Adv. Synth. Catal. 2016; 358: 2661
- 2f Wu H. Chu J. Li C. Hwang L. Wu M. Organometallics 2016; 35: 288
- 2g Supranovich VI. Vorob’ev AY. Borodkin GI. Gatilov YV. Shubin VG. Tetrahedron Lett. 2016; 57: 1093
- 2h Ravi C. Mohan DC. Reddy NN. K. Adimurthy S. RSC Adv. 2015; 5: 42961
- 2i Wang B. Su F. Jia J. Wu F. Zhang S. Ge Y. Wang J. Wang J. Tetrahedron Lett. 2015; 56: 425
- 2j Nishigaya Y. Umei K. Yamamoto E. Kohno Y. Seto S. Tetrahedron Lett. 2014; 55: 5963
- 2k Ding S. Yan Y. Jiao N. Chem. Commun. 2013; 49: 4250
- 2l Xie Y. Ge Y. Feng L. Xu H. Meng S. Zhao G. Xu W. Jia J. Wang J. Heterocycles 2013; 87: 815
- 2m Hoashi Y. Takai T. Kotani E. Koike T. Tetrahedron Lett. 2013; 54: 2199
- 2n Fustero S. Román R. Asensio A. Maestro MA. Aceña JL. Simón-Fuentes A. Eur. J. Org. Chem. 2013; 7164
- 2o Tran-Dubé M. Sach N. Ninkovic S. Braganza JF. Huang Q. Johnson B. Collins MR. Tetrahedron Lett. 2012; 53: 4372
- 2p Wu H. Yang C. Hwang L. Wu M. Org. Biomol. Chem. 2012; 10: 6640
- 2q Stevens KL. Jung DK. Alberti MJ. Badiang JG. Peckham GE. Veal JM. Cheung M. Harris PA. Chamberlain SD. Peel MR. Org. Lett. 2005; 7: 4753
- 3 Meanwell NA. J. Med. Chem. 2011; 54: 2529
- 4a Chen P. Liu G. Synthesis 2013; 45: 2919
- 4b Tomashenko OA. Grushin VV. Chem. Rev. 2011; 111: 4475
- 4c Nie J. Guo H. Cahard D. Ma J. Chem. Rev. 2011; 111: 455
- 5a Demmer CS. Krogsgaard-Larsen N. Bunch L. Chem. Rev. 2011; 111: 7981
- 5b Lorke DE. Stegmeier-Petroianu A. Petroianu GA. J. Appl. Toxicol. 2017; 37: 13
- 5c Horsman GP. Zechel DL. Chem. Rev. 2017; 117: 5704
- 5d Chekan JR. Cogan DP. Nair SK. Med. Chem. Commun. 2016; 7: 28
- 5e Thornton PJ. Kadri H. Miccoli A. Mehellou Y. J. Med. Chem. 2016; 59: 10400
- 5f Wiemer AJ. Wiemer DF. Top. Curr. Chem. 2015; 360: 115
- 6a Bekheit MS. Kamel AA. Curr. Org. Chem. 2017; 21: 923
- 6b Ganoub NA. Sabry E. Abdou WM. Synth. Commun. 2017; 47: 1631
- 6c Babu BH. Prasad G. Raju CN. Rao MV. B. Curr. Org. Synth. 2017; 14: 883
- 6d Marinozzi M. Pertusati F. Serpi M. Chem. Rev. 2016; 116: 13991
- 6e Haji M. Beilstein J. Org. Chem. 2016; 12: 1269
- 6f Ivanova MV. Bayle A. Besset T. Pannecoucke X. Poisson T. Chem. Eur. J. 2016; 22: 10284
- 6g Maria A. Phillips F. Mini-Rev. Org. Chem. 2014; 11: 164
- 6h Adler P. Fadel A. Rabasso N. Tetrahedron Lett. 2014; 70: 4437
- 6i Pradere U. Garnier-Amblard EC. Coats SJ. Amblard F. Schinazi RF. Chem. Rev. 2014; 114: 9154
- 6j Xu Q. Zhou Y. Zhao C. Yin S. Han L. Mini-Rev. Med. Chem. 2013; 13: 824
- 7a Rassukana YV. Yelenich IP. Onyśko PP. Synytsya AD. Phosphorus, Sulfur Silicon Relat. Elem. 2013; 188: 192
- 7b Baszczynski O. Janeba Z. Med. Res. Rev. 2013; 33: 1304
- 7c Shen Y. Zhang Y. Jiang G. Synthesis 2002; 714
- 7d Romanenko VD. Kukhar VP. Chem. Rev. 2006; 106: 3868
- 7e O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 7f Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 7g Duda B. Tverdomed SN. Röschenthaler G. J. Org. Chem. 2011; 76: 71
- 8 CCDC 1514599 (3a) contains the supplementary crystallographic details for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 9 The electronic density of the carbon atoms in the pyridine ring was determined by comparison of their chemical shift in the 13C NMR spectra. The signal of the carbon atom which appeared at lower field demonstrated its lower electron density.
- 10 Gösl R. Meuwsen A. Org. Synth. Coll. Vol. V . John Wiley & Sons; London: 1963: 43