Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(20): 4104-4112
DOI: 10.1055/s-0037-1610540
DOI: 10.1055/s-0037-1610540
paper
Isocyanide-Based MCRs: Straightforward Access to Perfluroalkylated γ-Spiroiminolactones
The authors are grateful to the National Natural Science Foundation of China (NSFC) (Grant Nos. 21672138, 21542005, 21272152) for financial support.Further Information
Publication History
Received: 07 May 2018
Accepted after revision: 06 June 2018
Publication Date:
16 July 2018 (online)
Abstract
A variety of perfluoroalkyl-substituted γ-spiroiminolactones have been synthesized via a one-pot, three-component cascade reaction in which isocyanides, methyl perfluoroalk-2-ynoates and 1,2-diketones undergo highly regioselective Michael addition, nucleophilic addition and cyclization. This reaction has the advantages of good to excellent chemical yields, operationally simple procedure, and short reaction times.
Key words
spiroiminolactones - perfluoroalkyl-substituted - isocyanide - multicomponent reaction - methyl perfluoroalk-2-ynoateSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609549.
- Supporting Information
-
References
- 1a Dider V. Liang L. Synth. Commun. 2003; 33: 1575
- 1b Tang Y. Li C. Tetrahedron Lett. 2006; 47: 3823
- 1c Maghsoodlou MT. Hazeri N. Habibi-Khorassani SM. Ziyaadini M. Marandi G. Barani KK. Ebrahimi P. Rostami Charati F. Sobolev A. Makha M. Heterocycl. Chem. 2009; 46: 843
- 1d Maghsoodlou MT. Hazeri N. Habibi-Khorassani SM. Marandi G. Nassiri M. Heterocycl. Chem. 2006; 43: 481
- 1e Oliaruso MA. Wolf JF. Synthesis of Lactones and Lactams . Wiley; New York: 1993
- 1f Wang HJ. Tang P. Zhou QL. Zhang D. Chen ZT. Huang HX. Qin Y. J. Org. Chem. 2015; 80: 2494
- 2 Ito Y. Kato H. Saegusa T. J. Org. Chem. 1982; 47: 743
- 3a Bartoli A. Rodier F. Commeiras L. Parrain JL. Chouraqui G. Nat. Prod. Rep. 2011; 28: 763
- 3b Marson CM. Chem. Soc. Rev. 2011; 40: 5514
- 3c Xie JH. Zhou QL. Acc. Chem. Res. 2008; 41: 581
- 3d Saragi TP I. Spehr T. Siebert A. Fuhrmann-Lieker T. Salbeck J. Chem. Rev. 2007; 107: 1011
- 3e For selected recent examples, see: Liu P. Hong S. Weinreb SM. J. Am. Chem. Soc. 2008; 130: 756
- 4a Nishikata T. Itonaga K. Yamaguchi N. Sumimoto M. Org. Lett. 2017; 19: 2686
- 4b Li J. Noyori S. Iwasaki M. Nakajima K. Nishihara Y. Heterocycles 2012; 86: 933
- 4c Tao X. Zhang Q. Zhang ZG. Liu Q. J. Org. Chem. 2007; 72: 8005
- 4d Yoshida H. Fukushima H. Morishita T. Ohshita J. Kunai A. Tetrahedron 2007; 63: 4793
- 4e Singh GS. Desta ZY. Chem. Rev. 2012; 112: 6104
- 5a Asghari S. Qandalee M. Sarmadi AA. Mol. Diversity 2017; 21: 69
- 5b Safaei HR. Shioukhi N. Shekouhy M. Monatsh. Chem. 2013; 144: 1855
- 5c Li J. Liu YJ. Li CJ. Jia XS. Chem. Eur. J. 2011; 17: 7409
- 5d Esmaeili AA. Vesalipoor H. Synthesis 2009; 1635
- 5e Hazeri N. Maghsoodlou MT. Habibi-Khorassani SM. Ziyaadini M. Marandi G. Khandan-Barani K. Bijanzadeh HR. ARKIVOC 2007; (xiii): 34
- 5f Maghsoodlou MT. Hazeri N. Khorassani SM. H. Marandi G. Nassiri M. J. Heterocycl. Chem. 2006; 43: 481
- 5g Maghsoodlou MT. Khorassani SM. H. Hazeri N. Heydari R. Marandi G. Nassiri M. J. Chem. Res. 2006; 220
- 5h Maghsoodlou MT. Hazeri N. Habibi-Khorasani SM. Heydari R. Marandi G. Nassiri M. Synth. Commun. 2005; 35: 2569
- 5i Azizian J. Karimi AR. Mohammadi AA. Mohammadizadeh MR. Heterocycles 2004; 63: 2225
- 5j Nair V. Vinod AU. Abhilash N. Menon RS. Santhi V. Varma RL. Viji S. Mathew S. Srinivas R. Tetrahedron 2003; 59: 10279
- 5k Esmaeili AA. Darbanian M. Tetrahedron 2003; 59: 5545
- 5l Azizian J. Karimi AR. Mohammadi AA. Synth. Commun. 2003; 33: 387
- 5m Nair V. Vinod AU. Nair JS. Sreekanth AR. Rath NP. Tetrahedron Lett. 2000; 41: 6675
- 6a Ahmad S. Ali M. Hossien RA. Afshin S. Mol. Diversity 2011; 15: 41
- 6b Oakes TR. David HG. Nagel FJ. J. Am. Chem. Soc. 1969; 91: 4761
- 6c Takeo T. Naruyoshi O. Yoshio S. Tomotaka Y. Tetrahedron Lett. 1969; 3407
- 7a Tanaka K. Yuki Gosei Kagaku Kyokaishi 1990; 48: 16 ; and references cited therein
- 7b Filler R. Kobayashi Y. Biomedicinal Aspects of Fluorine Chemistry . Kodansha and Elsevier Biomedical; Tokyo and New York: 1982
- 7c Welch JT. Eswarakrishnan S. Fluorine in Bioorganic Chemistry . John Wiley & Sons; New York: 1991
- 8 CCDC 1543111 (4g) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. Unit cell parameters (4g): a 17.626(10) Å, b 9.290(5) Å, c 16.098(9) Å; α 90.00°, β 115.041(6)°, γ 90.00°; Space Group: P21/c (14)
- 9 Hamper BC. Org. Synth. 1992; 70: 246
For selected recent reviews, see:
For selected recent examples, see:
For selected recent examples for isocyanide-based iminolactonizations, see: