RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2019; 51(02): 508-515
DOI: 10.1055/s-0037-1610629
DOI: 10.1055/s-0037-1610629
paper
Catalyst-Free Photodriven Reduction of α-Haloketones with Hantzsch Ester
The authors are grateful to the National Natural Science Foundation of China (No. 21572118 & No. 21572080), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu University (No. 10JDG042 and No. 14JDG018) for their generous support.
Weitere Informationen
Publikationsverlauf
Received: 20. Mai 2018
Accepted after revision: 04. August 2018
Publikationsdatum:
29. August 2018 (online)
Dedicated to Professor Xiyan Lu on the occasion of his 90th birthday.
Abstract
Catalyst-free dehalogenation of α-haloketones under visible light irradiation is studied. The reactions were carried out in common organic solvent. The outcomes of dechlorination are excellent in yields up to 92%, and it is also applicable to bromides, which give even higher yields. The reaction is tolerable to a broad spectrum of substrates, especially to aromatic ketones, including various aryl and hetaryl groups. There are two examples of aliphatic ketones presented in the paper, although their reactivities are not as high as that of the aromatic ketones.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610629.
- Supporting Information
-
References
- 1a Hantzsch A. Ber. Dtsch. Chem. Ges. 1881; 14: 1637
- 1b Kurz JL. Hutton R. Westheimer FH. J. Am. Chem. Soc. 1961; 83: 584
- 1c Uldrikis YR. Dubur GY. Dipan IV. Chekavichus BS. Chem. Heterocycl. Compd. 1975; 11: 1070
- 1d Gelbard G. Lin J. Roques N. J. Org. Chem. 1992; 57: 1789
- 2a Faisca Phillips AM. Pombeiro AJ. Org. Biomol. Chem. 2017; 15: 2307
- 2b Herrera RP. Top. Curr. Chem. 2016; 374: 40
- 2c McSkimming A. Colbran SB. Chem. Soc. Rev. 2013; 42: 5439
- 2d Zheng C. You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 3a Huang W. Chen J. Hong D. Chen W. Cheng X. Tian Y. Li G. J. Org. Chem. 2018; 83: 578
- 3b He R. Cui P. Pi D. Sun Y. Zhou H. Tetrahedron Lett. 2017; 58: 3571
- 3c Lee KN. Lei Z. Ngai MY. J. Am. Chem. Soc. 2017; 139: 5003
- 3d Pi D. Zhou H. Cui P. He R. Sui Y. ChemistrySelect 2017; 2: 3976
- 3e Weng G. Ma X. Fang D. Tan P. Wang L. Yang L. Zhang Y. Qian S. Wang Z. RSC Adv. 2017; 7: 22909
- 3f Tang W. Zhao X. Xiao J. Synthesis 2017; 49: 3157
- 3g Carlone A. Bernardi L. Org. Chem. Front. 2017; 4: 1651
- 4 Kuivila HG. Menapace LW. Warner CR. J. Am. Chem. Soc. 1962; 84: 3584
- 5a Martinez-Haya R. Miranda MA. Marin ML. Eur. J. Org. Chem. 2017; 2164
- 5b Li X. Hao Z. Zhang F. Li H. ACS Appl. Mater. Interfaces 2016; 8: 12141
- 5c Dong W.-L. Cai W.-X. Wu R. Li Z.-M. Zhao W.-G. Liu X.-H. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 980
- 5d Jung J. Kim J. Park G. You Y. Cho EJ. Adv. Synth. Catal. 2016; 358: 74
- 5e Luo J. Zhang X. Zhang J. ACS Catal. 2015; 5: 2250
- 6 Maji T. Karmakar A. Reiser O. J. Org. Chem. 2011; 76: 736
- 7 Lin CY. Peh J. Coote ML. J. Org. Chem. 2011; 76: 1715
- 8a Peng P. Wu J. Liang J. Zhang T. Huang J. Wu F. RSC Adv. 2017; 7: 56034
- 8b Nobuta T. Hirashima S. Tada N. Miura T. Itoh A. Org. Lett. 2011; 13: 2576
- 9a Tanner DD. Diaz GE. Potter A. J. Org. Chem. 1985; 50: 2149
- 9b Tanner DD. Singh HK. J. Org. Chem. 1986; 51: 5182
- 10 Chen W. Tao H. Huang W. Cheng X. Li G. Wang G. Li S. Li G. Chem. Eur. J. 2016; 22: 9546
- 11 Narayanam JM. R. Tucker JW. Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
- 12 Lu Z. Yang Y.-Q. Li H.-X. Synthesis 2016; 48: 4221
- 13 Denis Prat D. Hayler J. AndyWells A. Green Chem. 2014; 16: 4546
- 14 Kubo K. Watanabe K. Sakurai T. Acta Crystallogr., Sect. E 2007; 63: o1300
- 15 Ruan J. Li X. Saidi O. Xiao J. J. Am. Chem. Soc. 2008; 130: 2424
- 16 Sharghi H. Jokar M. Doroodmand MM. Khalifeh R. Adv. Synth. Catal. 2010; 352: 3031
- 17 Maji T. Karmakar A. Reiser O. J. Org. Chem. 2011; 76: 736
- 18 Zhao B. Lu X. Org. Lett. 2006; 8: 5987
- 19 Pandey PN. Purkayastha ML. Synthesis 1982; 876
- 20 Liu T. Shen Q. Org. Lett. 2011; 13: 2342
- 21 Cutulic SP. V. Findlay NJ. Zhou S.-Z. Chrystal EJ. T. Murphy JA. J. Org. Chem. 2009; 74: 8713
- 22 Oelshläger H. Schreiber O. Justus Liebigs Ann. Chem. 1961; 641: 81
- 23 Kurihara T. Toshiro F. Shinya H. Ryuji Y. Synthesis 1987; 396
- 24 Zoeller RR. Sumner CE. J. J. Org. Chem. 1990; 55: 319
- 25 Paizs C. Toşa M. Majdik C. Moldovan P. Novák L. Kolonits P. Marcovici A. Irimie F.-D. Poppe L. Tetrahedron: Asymmetry 2003; 14: 1495
- 26 Farrar MW. Levine R. J. Am. Chem. Soc. 1950; 72: 4433
- 27 House HO. Ghali NI. Haack J. VanDerveer D. J. Org. Chem. 1980; 45: 1807
- 28 Seetula JA. J. Mol. Catal. A: Chem. 2005; 231: 153
- 29 Piller FM. Pradad A. Gavryushin A. Helm M. Knochel P. Angew. Chem. Int. Ed. 2008; 36: 6802
- 30 Wright JA. Gaunt MJ. Spencer JB. Chem. Eur. J. 2006; 12: 949
- 31 Vyas VK. Bhanage BM. Org. Lett. 2016; 18: 6436
- 32 May EL. Mosettig E. J. Am. Chem. Soc. 1948; 70: 686