Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(08): 1795-1802
DOI: 10.1055/s-0037-1610682
DOI: 10.1055/s-0037-1610682
paper
Regioselective Addition of Quinoline Derivatives to Carbonyl Compounds via Palladium-Catalyzed Umpolung with Diethylzinc
This research was supported by a Grant-in-Aid for Scientific Research (C) (No. 16K08167 and 15K07862) and a Grant-in-Aid for Research Activity Start-up (No. 17H06961) from JSPS.Further Information
Publication History
Received: 03 November 2018
Accepted after revision: 21 November 2018
Publication Date:
24 January 2019 (online)

Abstract
An efficient method for the C-4-selective addition of quinoline derivatives to carbonyl compounds is described. The combination of 2-ethoxy-1-ethoxycarbonyl-1,2-dihydroquinolines (EEDQs) with a palladium catalyst and diethylzinc generates nucleophilic allyl species which undergo addition to various aldehydes and ketones. C-4-Substituted quinoline derivatives are obtained in high to excellent yields with moderate diastereoselectivities.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610682.
- Supporting Information
-
References
- 1a Eswaran S, Adhikari AV, Chowdhury IH, Pal NK, Thomas KD. Eur. J. Med. Chem. 2010; 45: 3374
- 1b Afzal O, Kumar S, Haider MR, Ali MR, Kumar R, Jaggi M, Bawa S. Eur. J. Med. Chem. 2015; 97: 871
- 1c Kaur K, Jain M, Reddy RP, Jain R. Eur. J. Med. Chem. 2010; 45: 3245
- 1d Mukherjee S, Pal M. Drug Discovery Today 2013; 18: 389
- 2 Skraup ZH. Ber. Dtsch. Chem. Ges. 1880; 13: 2086
- 3 Doebner O, von Miller W. Ber. Dtsch. Chem. Ges. 1881; 14: 2812
- 4 Friedländer P, Henriques S. Ber. Dtsch. Chem. Ges. 1882; 15: 2572
- 5 Combes A. Bull. Soc. Chim. Fr. 1888; 49: 89
- 6 Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
- 7a Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
- 7b Takamura M, Funabashi K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 6327
- 7c Cointeaux L, Alexakis A. Tetrahedron: Asymmetry 2005; 16: 925
- 7d Yamaoka Y, Miyabe H, Takemoto Y. J. Am. Chem. Soc. 2007; 129: 6686
- 7e Black DA, Beveridge RE, Arndtsen BA. J. Org. Chem. 2008; 73: 1906
- 7f Pappoppula M, Cardoso FS. P, Garrett BO, Aponick A. Angew. Chem. Int. Ed. 2015; 54: 15202
- 7g Wang Y, Liu Y, Zhang D, Wei H, Shi M, Wang F. Angew. Chem. Int. Ed. 2016; 55: 3776
- 7h Liu Z, Chen L, Li J, Zhao J, Xu M, Feng L, Wan R.-Z, Li W, Liu L. Org. Biomol. Chem. 2017; 15: 7600
- 8a Huang Y.-Y, Cai C, Yang X, Lv Z.-C, Schneider U. ACS Catal. 2016; 6: 5747
- 8b Lee JH, Kweon JS, Yoon CM. Tetrahedron Lett. 2002; 43: 5771
- 8c Kodama T, Moquist PN, Schaus SE. Org. Lett. 2011; 13: 6316
- 8d Batey RA, MacKay DB, Santhakumar V. J. Am. Chem. Soc. 1999; 121: 5075
- 8e Chang YM, Park YS, Lee SH, Yoon CM. Tetrahedron Lett. 2004; 45: 9049
- 8f Sun S, Mao Y, Lou H, Liu L. Chem. Commun. 2015; 51: 10691
- 8g Berti F, Malossi F, Marchetti F, Pineschi M. Chem. Commun. 2015; 51: 13694
- 8h Volla CM. R, Fava E, Atodiresei I, Rueping M. Chem. Commun. 2015; 51: 15788
- 9a Graham TJ. A, Shields JD, Doyle AG. Chem. Sci. 2011; 2: 980
- 9b Sylvester KT, Wu K, Doyle AG. J. Am. Chem. Soc. 2012; 134: 16967
- 9c Graham TJ. A, Doyle AG. Org. Lett. 2012; 14: 1616
- 10a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
- 10b Butt NA, Zhang W. Chem. Soc. Rev. 2015; 44: 7929
- 11a Araki S, Kamei T, Hirashita T, Yamamura H, Kawai M. Org. Lett. 2000; 2: 847
- 11b Masuyama Y, Takahara JP, Kurusu Y. J. Am. Chem. Soc. 1988; 110: 4473
- 11c Tabuchi T, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1986; 27: 601
- 11d Araki S, Hatano M, Ito H, Butsugan Y. J. Organomet. Chem. 1987; 333: 329
- 11e Masuyama Y, Kinugawa N, Kurusu Y. J. Org. Chem. 1987; 52: 3702
- 11f Yasui K, Goto Y, Yajima T, Taniseki Y, Fugami K, Tanaka A, Tamaru Y. Tetrahedron Lett. 1993; 34: 7619
- 11g Tamaru Y, Tanaka A, Yasui K, Goto S, Tanaka S. Angew. Chem., Int. Ed. Engl. 1995; 34: 787
- 11h Kimura M, Tamaki T, Nakata M, Tohyama K, Tamaru Y. Angew. Chem. Int. Ed. 2008; 47: 5803
- 12a Tamaru Y. Eur. J. Org. Chem. 2005; 2647
- 12b Zanoni G, Pontiroli A, Marchetti A, Vidari G. Eur. J. Org. Chem. 2007; 3599
- 12c Spielmann K, Niel G, de Figueiredo RM, Campagne J.-M. Chem. Soc. Rev. 2018; 47: 1159
- 13 Onomura O, Fujimura N, Oda T, Matsumura Y, Demizu Y. Heterocycles 2008; 76: 177
- 14 The regioselectivity was calculated based on the integral ratio of the double bond signals (around 5.4 ppm) in the 1H NMR spectrum of the crude reaction mixture. For the 1H NMR analysis of C-2 and C-4 selectivity, see ref. 8g.
- 15 Compounds 3i/4i–3q/4q were obtained as inseparable mixtures after silica gel column chromatography.
- 16a Howell GP, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2006; 4: 1278
- 16b Tamaru Y. J. Organomet. Chem. 1999; 576: 215
- 17 The oxidative addition of EEDQ to a nickel catalyst with the assistance of a boronic acid as a Lewis acid was proposed in the Ni-catalyzed Suzuki–Miyaura coupling reaction; see ref. 9b.
- 18 Moquist PN, Kodama T, Schaus SE. Angew. Chem. Int. Ed. 2010; 49: 7096
Review of nucleophilic addition to N-activated pyridines:
Recent examples:
Review of catalytic reactions with N,O-aminals:
For representative examples, see:
For representative examples, see:
For reviews, see: