Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(06): 717-720
DOI: 10.1055/s-0037-1610688
DOI: 10.1055/s-0037-1610688
letter
Synthesis of 3H-Pyrrolo[2,3-c]quinoline by Sequential I2-Promoted Cyclization/Staudinger/Aza-Wittig/Dehydroaromatization Reaction
This work was supported by the National Natural Science Foundation of China (No. 21302047 and No. 21502047) and the Doctoral Starting up Foundation of Hubei University of Arts and Science.Further Information
Publication History
Received: 14 November 2018
Accepted after revision: 07 January 2019
Publication Date:
18 February 2019 (online)
Abstract
A facile synthetic approach to access of 3H-pyrrolo[2,3-c]quinoline derivatives has been achieved by a sequential I2-promoted cyclization/Staudinger/aza-Wittig/dehydroaromatization reaction. The targeted products were received in moderate to good yields (62–81%). The broad substrate scope and easy availability of the starting materials make this method a valuable tool for generating 3H-pyrrolo[2,3-c]quinoline products.
Key words
3H-pyrrolo[2,3-c]quinolines - I2-promoted cyclization - aza-Wittig reaction - azides - dehydroaromatizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610688.
- Supporting Information
-
References and Notes
- 1 These authors contributed equally.
- 2a Berthet M, Cheviet T, Dujardin G, Parrot I, Martinez J. Chem. Rev. 2016; 116: 15235
- 2b Zhang PY, Wong IL. K, Yan CS. W, Zhang XY, Jiang T, Chow LM. C, Wan SB. J. Med. Chem. 2010; 53: 5108
- 2c Pathania S, Rawal RK. Eur. J. Med. Chem. 2018; 157: 503
- 2d Yin P, Zhang Q, Shreeve JM. Acc. Chem. Res. 2016; 49: 4
- 2e Norris BC, Bielawski CW. Macromolecules 2010; 43: 3591
- 2f Chen D, Su SJ, Cao Y. J. Mater. Chem. 2014; 2: 9565
- 2g Jella T, Srikanth M, Soujanya Y, Singh SP, Giribabu L, Islam A, Han L, Bedja I, Gupta RK. Mater. Chem. Front. 2017; 1: 947
- 3a Ma X, Vo Y, Banwell MG, Willis AC. Asian J. Org. Chem. 2012; 1: 160
- 3b Ni L, Li Z, Wu F, Xu J, Wu X, Kong L, Yao H. Tetrahedron Lett. 2012; 53: 1271
- 3c Schwalm CS, Correia CR. D. Tetrahedron Lett. 2012; 53: 4836
- 4a Carroll AR, Duffy S, Avery VM. J. Org. Chem. 2010; 75: 8291
- 4b Yamaoka Y, Yoshida T, Shinozaki M, Yamada K, Takasu K. J. Org. Chem. 2015; 80: 957
- 5 Li SF, Di YT, He HP, Zhang Y, Wang YH, Yin JL, Tan CJ, Li SL, Hao XJ. Tetrahedron Lett. 2011; 52: 3186
- 6 Okanya PW, Mohr KI, Gerth K, Jansen R, Müller R. J. Nat. Prod. 2011; 74: 603
- 7 Gademann K, Kobylinska J. Chem. Rec. 2009; 9: 187
- 8 Sangnoi Y, Sakulkeo O, Yuenyongsawad S, Kanjana-opas A, Ingkaninan K, Plubrukarn A, Suwanborirux K. Mar. Drugs 2008; 6: 578
- 9 Akula M, Sridevi JP, Yogeeswari P, Sriram D, Bhattacharya A. Monatsh. Chem. 2014; 145: 811
- 10 Alazard JP, Millet-Paillusson C, Guenard D, Thal C. Bull. Soc. Chim. Fr. 1996; 133: 251
- 11a Akula M, El-Khoury PZ, Nag A, Bhattacharya A. RSC. Adv. 2014; 4: 25605
- 11b Akula M, Thigulla Y, Nag A, Bhattacharya A. RSC. Adv. 2015; 5: 57231
- 12a Men Y, Dong J, Wang S, Xu X. Org. Lett. 2017; 19: 6712
- 12b Penjarla TR, Kundarapu M, Baquer SM, Bhattacharya A. ChemistrySelect 2018; 3: 5386
- 12c Mahajan JP, Suryawanshi YR, Mhaske SB. Org Lett. 2012; 14: 5804
- 12d Patel B, Hilton ST. Synlett 2015; 26: 79
- 12e Wang Z, Xue L, He Y, Weng L, Fang L. J. Org. Chem. 2014; 79: 9628
- 12f Panarese JD, Lindsley CW. Org. Lett. 2012; 14: 5808
- 12g Wang Z, Xing X, Xue L, Gao F, Fang L. Org. Biomol. Chem. 2013; 11: 7334
- 12h Wang R, Wang SY, Ji SJ. Tetrahedron 2013; 69: 10836
- 12i Lindsay AC, Sperry J. Synlett 2013; 24: 461
- 13a Castillo PR, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 13b Mailyan AK, Eickhoff JA, Minakova AS, Gu Z, Lu P, Zakarian A. Chem. Rev. 2016; 116: 4441
- 13c Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
- 13d Zhao Y, Xia W. Chem. Soc. Rev. 2018; 47: 2591
- 13e Bhunia S, Pawar GG, Kumar SV, Jiang Y, Ma D. Angew. Chem. Int. Ed. 2017; 56: 16136
- 14a Jayaram V, Sridhar T, Sharma GV. M, Berrée F, Carboni B. J. Org. Chem. 2018; 83: 843
- 14b Okamoto K, Shimbayashi T, Tamura E, Ohe K. Chem. Eur. J. 2014; 20: 1490
- 14c Lao Z, Toy PH. Beilstein J. Org. Chem. 2016; 12: 2577
- 14d Hu Y, Li X, Wan B. Tetrahedron 2015; 71: 6935
- 14e Alaime T, Daniel M, Hiebel MA, Pasquinet E, Suzenet F, Guillaumet G. Chem. Commun. 2018; 54: 8411
- 14f Nie BJ, Wu LH, Hu RF, Sun Y, Wu J, He P, Huang NY. Synth. Commun. 2017; 47: 1368
- 14g Lu JY, Riedrich M, Mikyna M, Arndt HD. Angew. Chem. Int. Ed. 2009; 48: 8137
- 14h Ren ZL, Liu JC, Ding MW. Synthesis 2017; 49: 745
- 14i Wang L, Xie YB, Huang NY, Yan JY, Hu WM, Liu MG, Ding MW. ACS Catal. 2016; 6: 4010
- 14j Xiong J, Wei X, Liu ZM, Ding MW. J. Org. Chem. 2017; 82: 13735
- 15 Li Y, Xu H, Xing M, Huang F, Jia J, Gao J. Org. Lett. 2015; 17: 3690
- 16 Chang MY, Chen YC, Chan CK. Tetrahedron 2014; 70: 2257
- 17 Narboni N, Kaim LE. Eur. J. Org. Chem. 2017; 4242
- 18 Crystallographic data of compound 8c in this manuscript have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1870525. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [deposit@ccdc.cam.ac.uk].
- 19a Xiang L, Yang Y, Zhou X, Liu X, Li X, Kang X, Yan R, Huang G. J. Org. Chem. 2014; 79: 10641
- 19b Mishra S, Monir K, Mitra S, Hajra A. Org. Lett. 2014; 16: 6084
- 20 General Experimental Procedure for the Synthesis of 3H-Pyrrolo[2,3-c]quinolines To a solution of chalcone 3 (1 mmol), β-enamine ester (6, 1.5 mmol), K2CO3 (0.138 g, 1 mmol) in anhydrous DCE (5 mL) was added iodine (0.254 g, 1 mmol). The reaction was stirred at 80 °C for 10 h, and the reaction progress was monitored by TLC. Then, the mixture was washed with aqueous Na2S2O3, dried with dry sodium sulfate, and the solvent was evaporated under reduced pressure to give the crude product dihydropyrrole intermediate 7. Afterwards, toluene (5 mL) and PPh3 (0.262 g, 1 mmol) were added to the reaction system, and the mixture was heated to 110 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by silica gel chromatography (ethyl acetate/petroleum ether = 1:8) to afford 3H-pyrrolo[2,3-c]quinolines 8a–q in 62–81% yield. Analytical Data for Compound 8a: White solid (yield 0.294 g, 75%), mp 212–214 °C. 1H NMR (CDCl3, 400 MHz): δ = 9.08 (d, J = 8.0 Hz, 1 H), 8.21 (d, J = 8.0 Hz, 1 H), 7.67–6.88 (m, 12 H), 4.07 (s, 3 H), 2.43 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.8, 147.8, 145.3, 143.5, 138.6, 137.1, 129.8, 128.7, 128.4, 127.8, 127.4, 127.3, 126.9, 125.8, 125.3, 122.1, 108.6, 51.7, 13.8. LC-MS: m/z = 392. Anal. Calcd for C26H20N2O2 (392.46): C, 79.57; H, 5.14; N, 7.14. Found: C, 79.54; H, 5.23; N, 7.09.