Synlett, Inhaltsverzeichnis Synlett 2019; 30(14): 1662-1666DOI: 10.1055/s-0037-1610716 cluster © Georg Thieme Verlag Stuttgart · New York Catalyst-Controlled Regio- and Stereoselective Bromolactonization with Chiral Bifunctional Sulfides Ayano Tsuchihashi , Seiji Shirakawa * Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan eMail: seijishirakawa@nagasaki-u.ac.jp › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis Abstract Highly regioselective 5-exo bromolactonizations of stilbene-type carboxylic acids bearing electron-withdrawing substituents are achieved for the first time via the use of chiral bifunctional sulfide catalysts possessing a urea moiety. The chiral phthalide products are obtained in moderate to good enantioselectivities as the result of 5-exo cyclizations. Key words Key wordsasymmetric synthesis - lactonization - organocatalysis - regioselectivity - sulfides Volltext Referenzen References and Notes For reviews on organocatalysis, see: 1a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726 1b Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138 1c MacMillan DW. C. Nature 2008; 455: 304 1d Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013 For reviews on chiral sulfide catalysts, see: 2a Aggarwal VK. Synlett 1998; 329 2b Aggarwal VK, Winn CL. Acc. Chem. Res. 2004; 37: 611 2c McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK. Chem. Rev. 2007; 107: 5841 2d Gómez Arrayás R, Carretero JC. Chem. Commun. 2011; 47: 2207 2e Luo J, Liu X, Zhao X. Synlett 2017; 28: 397 For recent examples of chiral sulfide catalysts, see: 3a Wu H.-Y, Chang C.-W, Chein R.-J. J. Org. Chem. 2013; 78: 5788 3b Ke Z, Tan CK, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2014; 136: 5627 3c Ke Z, Tan CK, Liu Y, Lee KG. Z, Yeung Y.-Y. Tetrahedron 2016; 72: 2683 3d Liu X, An R, Zhang X, Luo J, Zhao X. Angew. Chem. Int. Ed. 2016; 55: 5846 3e Li Q.-Z, Zhang X, Zeng R, Dai Q.-S, Liu Y, Shen X.-D, Leng H.-J, Yang K.-C, Li J.-L. Org. Lett. 2018; 20: 3700 3f Cao Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2019; 58: 1315 3g Okada M, Kaneko K, Yamanaka M, Shirakawa S. Org. Biomol. Chem. 2019; 17: 3747 For reviews on catalytic asymmetric halolactonization, see: 4a Chen G, Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306 4b Tan CK, Zhou L, Yeung Y.-Y. Synlett 2011; 1335 4c Castellanos A, Fletcher SP. Chem. Eur. J. 2011; 17: 5766 4d Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938 4e Hennecke U. Chem. Asian J. 2012; 7: 456 4f Tan CK, Yeung Y.-Y. Chem. Commun. 2013; 49: 7985 4g Murai K, Fujioka H. Heterocycles 2013; 87: 763 4h Tan CK, Yu WZ, Yeung Y.-Y. Chirality 2014; 26: 328 4i Zheng S, Schienebeck CM, Zhang W, Wang H.-Y, Tang W. Asian J. Org. Chem. 2014; 3: 366 4j Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333 4k Tripathi CB, Mukherjee S. Synlett 2014; 25: 163 4l Sakakura A, Ishihara K. Chem. Rec. 2015; 15: 728 4m Gieuw MH, Ke Z, Yeung Y.-Y. Chem. Rec. 2017; 17: 287 4n Kawato Y, Hamashima Y. Synlett 2018; 29: 1257 4o Kristianslund R, Tungen JE, Hansen TV. Org. Biomol. Chem. 2019; 17: 3079 5a Chen J, Zhou L, Tan CK, Yeung Y.-Y. J. Org. Chem. 2012; 77: 999 5b Chen T, Yeung Y.-Y. Org. Biomol. Chem. 2016; 14: 4571 6 Nishiyori R, Tsuchihashi A, Mochizuki A, Kaneko K, Yamanaka M, Shirakawa S. Chem. Eur. J. 2018; 24: 16747 For reviews on phthalides, see: 7a Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891 7b Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213 For examples of catalytic asymmetric synthesis of chiral phthalides, see: 8a Kitamura M, Ohkuma T, Inoue S, Sayo N, Kumobayashi H, Akutagawa S, Ohta T, Takaya H, Noyori R. J. Am. Chem. Soc. 1988; 110: 629 8b Everaere K, Scheffler J.-L, Mortreux A, Carpentier J.-F. Tetrahedron Lett. 2001; 42: 1899 8c Lei J.-G, Hong R, Yuan S.-G, Lin G.-Q. Synlett 2002; 927 8d Tanaka K, Nishida G, Wada A, Noguchi K. Angew. Chem. Int. Ed. 2004; 43: 6510 8e Chang H.-T, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2007; 13: 4356 8f Tanaka K, Osaka T, Noguchi K, Hirano M. Org. Lett. 2007; 9: 1307 8g Luo J, Wang H, Zhong F, Kwiatkowski J, Xu L.-W, Lu Y. Chem. Commun. 2012; 48: 4707 8h Zhong F, Luo J, Chen G.-Y, Dou X, Lu Y. J. Am. Chem. Soc. 2012; 134: 10222 8i Luo J, Jiang C, Wang H, Xu L.-W, Lu Y. Tetrahedron Lett. 2013; 54: 5261 8j Luo J, Wang H, Zhong F, Kwiatkowski J, Xu L.-W, Lu Y. Chem. Commun. 2013; 49: 5775 8k Liu R, Jin R, An J, Zhao Q, Cheng T, Liu G. Chem. Asian J. 2014; 9: 1388 8l Han X, Dong C, Zhou H.-B. Adv. Synth. Catal. 2014; 356: 1275 8m Parmar D, Maji MS, Rueping M. Chem. Eur. J. 2014; 20: 83 8n Egami H, Asada J, Sato K, Hashizume D, Kawato Y, Hamashima Y. J. Am. Chem. Soc. 2015; 137: 10132 8o Gelat F, Coffinet M, Lebrun S, Agbossou-Niedercorn F, Michon C, Deniau E. Tetrahedron: Asymmetry 2016; 27: 980 8p Kong L, Zhao J, Cheng T, Lin J, Liu G. ACS Catal. 2016; 6: 2244 8q Liu W, Hu Z.-P, Yan Y, Liao W.-W. Tetrahedron Lett. 2018; 59: 3132 8r Cabrera JM, Tauber J, Krische MJ. Angew. Chem. Int. Ed. 2018; 57: 1390 9 For the reaction with catalyst (S)-4d at low temperature and the reaction with another different catalyst, see Schemes S1 and S2 in the Supporting Information. 10 The reaction with bromine (Br2) may proceed via a non-catalyzed reaction pathway (background reaction pathway). For a reaction using another reactive brominating reagent, see Scheme S3 in the Supporting Information. 11 For other control experiments, see Scheme S4 in the Supporting Information. 12 Asymmetric Bromolactonizations; General Procedure A solution of substrate 1 (0.10 mmol) and catalyst (S)-4d (10 mol%, 0.010 mmol) in CH2Cl2 (2 mL) was cooled to 0 °C. After stirring for 10 min, N-bromosuccinimide (NBS) (0.12 mmol) was added and the resulting mixture was stirred for 24 h at 0 °C. The mixture was quenched with saturated aqueous Na2SO3 (4.0 mL) at 0 °C, stirred for 10 min at 0 °C, diluted with CH2Cl2 (2 mL) and H2O (2 mL) and then warmed to room temperature. The organic materials were extracted with CH2Cl2 (3 × 5 mL) and the combined extracts dried over Na2SO4 and concentrated. (The 1H NMR analysis of the crude reaction mixture was performed at this stage to determine the regioselectivity of the bromolactonization products.) The residue was purified by flash column chromatography on silica gel (hexane/EtOAc as eluent) to give product 2. The enantioselectivity of the product 2 was determined by HPLC analysis on a chiral stationary phase. Compound 2a5 Yield: 31.9 mg (86%); colorless oil; [α]D 21 +4.4 (c = 0.87, CHCl3); 82:18 er; HPLC (Daicel Chiralpak IC-3, hexane/2-propanol = 10:1, flow rate = 0.5 mL/min, 230 nm): t R = 59.3 min (major) and 68.8 min (minor). IR (neat): 1769, 1324, 1286, 1167, 1124, 1114, 1067, 1018 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.85 (d, J = 7.2 Hz, 1 H), 7.67–7.71 (m, 2 H), 7.53–7.60 (m, 5 H), 5.96 (d, J = 6.4 Hz, 1 H), 5.16 (d, J = 6.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 168.9, 146.0, 140.1, 134.1, 131.1 (q, J = 32.1 Hz), 130.2, 129.0, 126.5, 126.0 (q, J = 2.5 Hz), 125.7 (m), 123.7, 123.6 (q, J = 272 Hz), 82.1, 51.8. Zusatzmaterial Zusatzmaterial Supporting Information