Synlett, Table of Contents Synlett 2020; 31(04): 359-362DOI: 10.1055/s-0037-1610743 letter © Georg Thieme Verlag Stuttgart · New York Copper-Catalyzed Synthesis of Alkyl-Substituted Pyrrolo[1,2-a]quinoxalines from 2-(1H-Pyrrol-1-yl)anilines and Alkylboronic Acids Xin Guan , Rulong Yan∗ State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou, 730000, Gansu, P. R. of China Email: yanrl@lzu.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A radical pathway for the construction of pyrrolo[1,2-a]quinoxalines by using 2-(1H-pyrrol-1-yl)anilines and alkylboronic acids has been developed. Features of this process include Cu catalysis, readily accessible starting materials, and simple operations. Alkylboronic acids are used for the construction of pyrrolo[1,2-a]quinoxaline derivatives, and the desired products are obtained in moderate yields. Key words Key wordspyrrolylanilines - alkylboronic acids - pyrroloquinoxalines - radical reaction Full Text References References and Notes 1a Torres E, Moreno E, Ancizu S, Barea C, Galiano S, Aldana I, Monge A, Pérez-Silanes S. Bioorg. Med. Chem. Lett. 2011; 21: 3699 1b Le T, Yu H, Niu X. Food Chem. 2015; 175: 85 1c Su W, Xiao M, Fan Q, Zhong J, Chen J, Dang D, Shi J, Xiong W, Duan X, Tan H, Liu Y, Zhu W. Org. Electron. 2015; 17: 129 1d Wang L, Yang X, Wang X, Sun L. Dyes Pigm. 2015; 113: 581 1e Carta A, Loriga M, Paglietti G, Mattana AP, Fiori L, Mollicotti P, Sechi L, Zanetti S. Eur. J. Med. Chem. 2004; 39: 195 2 Moarbess G, Deleuze-Masquefa C, Bonnard V, Gayraud-Paniagua S, Vidal J.-R, Bressolle F, Pinguetand F, Bonnet P.-A. Bioorg. Med. Chem. 2008; 16: 6601 3a Prunier H, Rault S, Lancelot J.-C, Robba M, Renard P, Delagrange P, Pfeiffer B, Caignard D.-H, Misslin R, Hamon M. J. Med. Chem. 1997; 40: 1808 3b Butini S, Budriesi R, Hamon M, Morelli E, Gemma S, Brindisi M, Borrelli G, Novellino E, Fiorini I, Ioan P, Chiarini A, Cagnotto A, Mennini T, Fracasso C, Caccia S, Campiani G. J. Med. Chem. 2009; 52: 6946 4 Guillon J, Mouray E, Moreau S, Mullié C, Forfar I, Desplat V, Belisle-Fabre S, Pinaud N, Ravanello F, Le-Naour A, Léger J.-M, Gosmann G, Jarry C, Déléris G, Sonnet P, Grellier P. Eur. J. Med. Chem. 2011; 46: 2310 5 Cheeseman GW. H, Tuck B. J. Chem. Soc. C. 1966; 852 6a Zhang Z, Xie C, Tan X, Song G, Wen L, Gao H, Ma C. Org. Chem. Front. 2015; 2: 942 6b Xie C, Feng L, Li L, Ma X, Liu Y, Ma C. Org. Biomol. Chem. 2016; 14: 8529 7 Li J, Zhang J, Yang H, Gao Z, Jiang G. J. Org. Chem. 2017; 82: 765 8 He Z, Bae M, Wu J, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 14451 9 de Fatima Pereira M, Thiéry V. Org. Lett. 2012; 14: 4754 10a An Z, Zhao L, Wu M, Ni J, Qi Z, Yu G, Yan R. Chem. Commun. 2017; 53: 11572 10b An Z, Jiang Y, Guan X, Yan R. Chem. Commun. 2018; 54: 10738 11a Molander GA, Ellis N. Acc. Chem. Res. 2007; 40: 275 11b Darses S, Genet J.-P. Chem. Rev. 2008; 108: 288 11c Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852 11d Tellis JC, Kelly CB, Primer DN, Jouffroy M, Molander GA. Acc. Chem. Res. 2016; 49: 1429 11e Sorin G, Martinez Mallorquin R, Contie Y, Baralle A, Malacria M, Goddard J.-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721 11f Zhang L, Liu Z.-Q. Org. Lett. 2017; 19: 6594 12a Demir AS, Reis Ö, Emrullahoglu M. J. Org. Chem. 2003; 68: 578 12b Uchiyama N, Shirakawa E, Nishikawa R, Hayashi T. Chem. Commun. 2011; 47: 11671 12c Lv W.-X, Zeng Y.-F, Zhang S.-S, Li Q, Wang H. Org. Lett. 2015; 17: 2972 12d Seiple IB, Su S, Rodriguez RA, Gianatassio R, Fujiwara Y, Sobel AL, Baran PS. J. Am. Chem. Soc. 2010; 132: 13194 12e Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Del Bel M, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292 12f Tobisu M, Koh K, Furukawa T, Chatani N. Angew. Chem. Int. Ed. 2012; 51: 11363 12g Liu D, Liu C, Li H, Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453 12h Bering L, Antonchick AP. Org. Lett. 2015; 17: 3134 12i Castro S, Fernández J, Fañanás FJ, Vicente R, Rodríguez F. Chem. Eur. J. 2016; 22: 9068 12j Li G.-X, Morales-Rivera CA, Wang Y, Gao F, He G, Liu P, Chen G. Chem. Sci. 2016; 7: 6407 13 Zhao B, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 12727 14 Li L, Chen H, Mei M, Zhou L. Chem. Commun. 2017; 53: 11544 15a Zhao J.-F, Gao P, Duan X.-H, Guo L.-N. Adv. Synth. Catal. 2018; 360: 1775 15b Wu J, Zhang J.-Y, Gao P, Xu S.-L, Guo L.-N. J. Org. Chem. 2018; 83: 1046 15c Zhang J.-Y, Duan X.-H, Yang J.-C, Guo L.-N. J. Org. Chem. 2018; 83: 4239 16 4-Propylpyrrolo[1,2-a]quinoxaline (3aa):2 Typical Procedure A mixture of 2-(1H-pyrrol-1-yl)aniline (1a; 1 equiv, 0.3 mmol), BuB(OH)2 (2a; 3 equiv, 0.9 mmol), PivOH (1 equiv, 0.3 mmol), Cu(OPiv)2 (10 mol%, 0.03 mmol), and DCM (1 mL) was stirred at 80 °C under O2 (balloon) for 8 h. Upon completion of the reaction (TLC), the mixture was concentrated in vacuo, and the crude product was purified by column chromatography [silica, gel, PE–EtOAc (10:1)] to give a light-yellow solid; yield: (40.3 mg, 73%); mp 45–46 °C. 1H NMR (400 MHz, CDCl3): δ = 7.94–7.90 (m, 1 H), 7.90–7.89 (m, 1 H), 7.84–7.80 (m, 1 H), 7.49–7.44 (m, 1 H), 7.44–7.39 (m, 1 H), 6.92–6.89 (m, 1 H), 6.85–6.83 (m, 1 H), 3.02–2.97 (m, 2 H), 1.99–1.89 (m, 2 H), 1.10–1.05 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 157.4, 136.0, 129.4, 127.3, 126.8, 126.1, 125.0, 114.1, 113.6, 113.4, 106.3, 37.8, 22.0, 14.3. HRMS (ESI): m/z [M + H]+ calcd for C14H15N2: 211.1230; found: 211.1227. Supplementary Material Supplementary Material Supporting Information