Subscribe to RSS
DOI: 10.1055/s-0037-1610778
Convenient One-Pot Synthesis of 9H-Carbazoles by Microwave Irradiation Employing a Green Palladium-Based Nanocatalyst
This work was generously supported by the National Council of Scientific and Technical Research (Consejo Nacional de Investigaciones Científicas y Técnicas; CONICET), the National Agency for Scientific and Technological Promotion (Agencia Nacional de Promoción Científica y Tecnológica; ANPCyT), and the Universidad Nacional del Sur (Secretaría General de Ciencia y Tecnología, Universidad Nacional del Sur; SGCyT-UNS), Argentina.
Dedicated to Professor Julio C. Podestá on the occasion of his 80th birthday
Abstract
An efficient palladium-catalyzed tandem reaction for the one-pot synthesis of 9H-carbazoles under microwave irradiation is developed. This approach involves a sequential Buchwald–Hartwig amination and a direct arylation from affordable and inexpensive anilines and 1,2-dihaloarenes. For the development of this purpose, a novel and magnetically recoverable palladium nanocatalyst supported on a green biochar under ligand-free conditions is used. Compared to other existing palladium-based protocols, the present synthetic methodology shows a drastic reduction in reaction times and excellent compatibility with different functional groups allowing to obtain a small library of 9H-carbazoles in high yields and with good regioselectivity. This procedure represents the first example in the direct synthesis of carbazoles using a heterogeneous palladium nanocatalyst from commercial precursors. To examine the application of this protocol, a direct and scalable synthesis of the bioactive carbazole alkaloid clausenalene from commercially available starting materials is described.
Key words
carbazoles - tandem reaction - microwave-assisted synthesis - heterogeneous catalyst - synthetic methodsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610778.
- Supporting Information
Publication History
Received: 19 May 2021
Accepted after revision: 21 June 2021
Article published online:
22 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Issa S, Prandina A, Bedel N, Rongved P, Yous S, Le Borgne M, Bouaziz Z. J. Enzyme Inhib. Med. Chem. 2019; 34: 1321
- 1b Yang J.-H, Wang X.-Y, Zhou Y.-P, Lu R, Chen C.-H, Zhang M.-H, Cheng Y.-Y, Morris-Natschke SL, Lee K.-H, Wang Y.-S. Molecules 2019; 25: 99
- 1c Liu Y.-P, Hu S, Liu Y.-Y, Zhang M.-M, Zhang W.-H, Qiang L, Fu Y.-H. Bioorg. Chem. 2019; 91: 103
- 1d Shen M, Li P.-T, Wu Y.-J, Lin C.-H, Chai E, Chang T.-C, Chen C.-T. Med. Mycol. 2019; 58: 521
- 1e Pattanashetty SH, Hosamani KM, Shettar AK, Mohammed Shafeeulla R. J. Heterocycl. Chem. 2018; 55: 1765
- 2a Ledwon P. Org. Electron. 2019; 75: 105422
- 2b Hwang J, Lee C, Jeong J.-E, Kim CY, Woo HY, Park S, Cho MJ, Choi DH. ACS Appl. Mater. Interfaces 2020; 12: 8485
- 2c Neogi I, Jhulki S, Ghosh A, Chow TJ, Moorthy JN. ACS Appl. Mater. Interfaces 2015; 7: 3298
- 2d Gao L, Schloemer TH, Zhang F, Chen X, Xiao C, Zhu K, Sellinger A. ACS Appl. Energy Mater. 2020; 3: 4492
- 3a Strahan J, Popere BC, Khomein P, Pointer CA, Martin SM, Oldacre AN, Thayumanavan S, Young ER. Dalton Trans. 2019; 48: 8488
- 3b Sadeghian B, Sakhteman A, Faghih Z, Nadri H, Edraki N, Iraji A, Sadeghian I, Rezaei Z. J. Mol. Struct. 2020; 1221: 128793
- 4 Georgiades SN, Nicolaou PG. Adv. Heterocycl. Chem. 2019; 129: 1
- 5a Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 5b Döndaş HA, Retamosa M. dG, Sansano JM. Organometallics 2019; 38: 1828
- 5c Mei T.-S, Kou L, Ma S, Engle KM, Yu J.-Q. Synthesis 2012; 44: 1778
- 5d Yajun L, Jihye K, Junghyun C. Curr. Org. Chem. 2014; 18: 2049
- 6a Liu X, Sheng H, Zhou Y, Song Q. Chem. Commun. 2020; 56: 1665
- 6b Maiti S, Mal P. Org. Lett. 2017; 19: 2454
- 6c Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv. Synth. Catal. 2018; 360: 887
- 7a Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
- 7b Yang C, Lin K, Huang L, Pan W.-d, Liu S. Beilstein J. Org. Chem. 2016; 12: 2490
- 7c Forke R, Jäger A, Knölker H.-J. Org. Biomol. Chem. 2008; 6: 2481
- 8a Tsang WC. P, Munday RH, Brasche G, Zheng N, Buchwald SL. J. Org. Chem. 2008; 73: 7603
- 8b Jordan-Hore JA, Johansson CC. C, Gulias M, Beck EM, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
- 8c Bjørsvik H.-R, Elumalai V. Eur. J. Org. Chem. 2016; 5474
- 9 Watanabe T, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2009; 74: 4720
- 10 Goo D.-Y, Woo SK. Org. Biomol. Chem. 2016; 14: 122
- 11a Perez-Lorenzo M. J. Phys. Chem. Lett. 2012; 3: 167
- 11b Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L. Green Chem. 2016; 18: 3471
- 11c Sheldon RA, Arends I, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 2007
- 12a Sosnik A, Gotelli G, Abraham GA. Prog. Polym. Sci. 2011; 36: 1050
- 12b Sharma N, Sharma UK, Van der Eycken EV. Microwave-Assisted Organic Synthesis: Overview of Recent Applications. In Green Techniques for Organic Synthesis and Medicinal Chemistry. Zhang W, Cue BW. Wiley; Hoboken: 2018: 441-468
- 12c Francesco F, Irene S, Giuseppe C, Angela C, Ferdinando F, Elisa M, Elisa P, Beatrice S, Vincenzo S. Med. Chem. 2016; 12: 720
- 13a Kokel A, Schäfer C, Török B. Green Chem. 2017; 19: 3729
- 13b Palma V, Barba D, Cortese M, Martino M, Renda S, Meloni E. Catalysts 2020; 10: 246
- 14a Ishida T, Tsunoda R, Zhang Z, Hamasaki A, Honma T, Ohashi H, Yokoyama T, Tokunaga M. Appl. Catal., B: Environmental 2014; 150-151: 523
- 14b Parisien M, Valette D, Fagnou K. J. Org. Chem. 2005; 70: 7578
- 15a Ackermann L, Althammer A. Angew. Chem. Int. Ed. 2007; 46: 1627
- 15b Ackermann L, Althammer A, Mayer P. Synthesis 2009; 3493
- 16a Delgado F, Gutierrez VS, Dennehy M, Alvarez M. Biochar 2020; 2: 319
- 16b Casoni AI, Hoch PM, Volpe MA, Gutierrez VS. J. Cleaner Prod. 2018; 178: 237
- 17 Casoni AI, Mendioroz P, Volpe MA, Gutierrez VS. J. Environ. Chem. Eng. 2020; 8: 103559
- 18 Bhattacharyya P, Biswas GK, Barua AK, Saha C, Roy IB, Chowdhury BK. Fitoterapia 2001; 72: 547
- 19a Liu X, Sheng H, Zhou Y, Song Q. Chem. Commun. 2020; 56: 1665
- 19b Shao C, Zhou B, Wu Z, Ji X, Zhang Y. Adv. Synth. Catal. 2018; 360: 887
- 19c Bedford RB, Cazin CS. J. Chem. Commun. 2002; 2310
- 20 Amarego WL. F. Purification of Laboratory Chemicals, 8th ed. Butterworth-Heinemann; Oxford: 2017
- 21 Schölten JF, Pijpers AP, Hustings ML. Catal. Rev. Sci. Eng. 1985; 27: 151
- 22 Takamatsu K, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 2892
- 23 Budén ME, Vaillard VA, Martin SE, Rossi RA. J. Org. Chem. 2009; 74: 4490
- 24 Bedford RB, Betham M. J. Org. Chem. 2006; 71: 9403
- 25 Alcaide B, Almendros P, Alonso JM, Quirós MT, Gadziński P. Adv. Synth. Catal. 2011; 353: 1871
- 26 Shou WG, Li J, Guo T, Lin Z, Jia G. Organometallics 2009; 28: 684
- 27 Jiang Q, Duan-Mu D, Zhong W, Chen H, Yan H. Chem. Eur. J. 2013; 19: 1903
- 28 Guerra WD, Rossi RA, Pierini AB, Barolo SM. J. Org. Chem. 2015; 80: 928
- 29 Chakraborty S, Chattopadhyay G, Saha C. J. Heterocycl. Chem. 2013; 50: 91
- 30 Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J. Org. Chem. 2008; 73: 5022
- 31 Laha JK, Barolo SM, Rossi RA, Cuny GD. J. Org. Chem. 2011; 76: 6421
- 32 Khan A, Karim R, Dhimane H, Alam S. ChemistrySelect 2019; 4: 6598
- 33 Rasheed S, Rao DN, Reddy KR, Aravinda S, Vishwakarma RA, Das P. RSC Adv. 2014; 4: 4960
For selective reviews on carbazole, see:
For representative intramolecular C–C formation reactions, see:
For representative intramolecular C–N formation reactions, see: