Synthesis, Inhaltsverzeichnis Synthesis 2022; 54(07): 1745-1752DOI: 10.1055/s-0037-1610788 feature Quaternary Phosphonium Carboxylates: Structure, Dynamics and Intriguing Olefination Mechanism Anna C. Vetter a Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany b School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland , Helge Müller-Bunz b School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland , Jimmy Muldoon b School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland , Kirill Nikitin ∗ b School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract We have earlier shown how the Wittig chemistry can be done using novel Eigenbase phosphonium carboxylate reagents. Here we discuss the phenomenon of ion pairing, their solution tautomerism, solid-state structure, and mechanistic aspects of olefination. The results point to a complex process involving unfamiliar H-bond-driven ion-pair equilibria followed by standard Wittig reaction steps. Key words Key wordsquaternary phosphonium salts - ion pairs - Wittig reaction - proton-transfer equilibrium - fluxional behaviour Volltext Referenzen References 1a Marcus Y, Hefter G. Chem. Rev. 2006; 106: 4585 1b Winstein S, Clippinger E, Fainberg AH, Heck R, Robinson GC. J. Am. Chem. Soc. 1956; 78: 328 1c Winstein S, Robinson GC. J. Am. Chem. Soc. 1958; 80: 169 1d Hogen-Esch TE, Smid J. J. Am. Chem. Soc. 1964; 86: 669 2a Lestini E, Nikitin K, Müller-Bunz H, Fitzmaurice D. Chem. Eur. J. 2008; 14: 1095 2b Morack T, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 1208 3a Duarte F, Paton RS. J. Am. Chem. Soc. 2017; 139: 8886 3b Sorgenfrei N, Hioe J, Greindl J, Rothermel K, Morana F, Lokesh N, Gschwind RM. J. Am. Chem. Soc. 2016; 138: 16345 3c Choudhury AR, Mukherjee S. Chem. Sci. 2016; 7: 6940 4a Uraguchi D, Ueki Y, Ooi T. Science 2009; 326: 120 4b Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc. 2008; 130: 14088 5a Gohndrone TR, Lee TB, DeSilva MA, Quiroz-Guzman M, Schneider WF, Brennecke JF. ChemSusChem 2014; 7: 1970 5b Lee TB, Oh S, Gohndrone TR, Morales-Collazo O, Seo S, Brennecke JF, Schneider WF. J. Phys. Chem. B 2016; 120: 1509 6a Eigen M, Tamm K. Z. Elektrochem. 1962; 66: 93 6b Eigen M, Tamm K. Z. Elektrochem. 1962; 66: 107 7 Nikitin K, Müller-Bunz H, Gilheany DG. Chem. Commun. 2013; 49: 1434 8a Jennings EV, Nikitin K, Ortin Y, Gilheany DG. J. Am. Chem. Soc. 2014; 136: 16217 8b Nikitin K, Jennings EV, Al Sulaimi S, Ortin Y, Gilheany DG. Angew. Chem. Int. Ed. 2018; 57: 1480 8c Gillick-Healy MW, Jennings EV, Müller-Bunz H, Nikitin K, Gilheany DG. Chem. Eur. J. 2016; 22: 2332 9 Nikitin K, Müller-Bunz H, Muldoon J, Gilheany DG. Chem. Eur. J. 2017; 23: 4794 10a Fraser KJ, MacFarlane DR. Aust. J. Chem. 2009; 62: 309 10b Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508 10c Werner T. Adv. Synth. Catal. 2009; 351: 1469 10d Enders D, Nguyen TV. Org. Biomol. Chem. 2012; 10: 5327 10e Golandaj A, Ahmad A, Ramjugernath D. Adv. Synth. Catal. 2017; 359: 3676 11a Miller NE. J. Am. Chem. Soc. 1965; 87: 390 11b Sekiguchi A, Ando W. J. Org. Chem. 1979; 44: 413 12 Firaha DS, Gibalova AV, Holloczki O. ACS Omega 2017; 2: 2901 13 Cattelan L, Noe M, Selva M, Demitri N, Perosa A. ChemSusChem 2015; 8: 3963 14 Vetter AC, Gilheany DG, Nikitin K. Org. Lett. 2021; 23: 1457 15a O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Carter AL, Kunkel SR, Przeworski KC, Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836 15b O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281 15c Rommel S, Belger C, Begouin JM, Plietker B. ChemCatChem 2015; 7: 1292 15d Longwitz L, Werner T. Pure Appl. Chem. 2019; 91: 95 15e Werner T, Hoffmann M, Deshmukh S. Eur. J. Org. Chem. 2014; 6873 15f Coyle EE, Doonan BJ, Holohan AJ, Walsh KA, Lavigne F, Krenske EH, O’Brien CJ. Angew. Chem. Int. Ed. 2014; 53: 12907 15g Hoffmann M, Deshmukh S, Werner T. Eur. J. Org. Chem. 2015; 4532 16a Dunne EC, Coyne EJ, Crowley PB, Gilheany DG. Tetrahedron Lett. 2002; 43: 2449 16b Byrne PA, Gilheany DG. J. Am. Chem. Soc. 2012; 134: 9225 16c Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670 17a Zhang X.-M, Bordwell FG. J. Am. Chem. Soc. 1994; 116: 968 17b Fu Y, Wang H.-J, Chong S.-S, Guo Q.-X, Liu L. J. Org. Chem. 2009; 74: 810 17c Cheng J.-P, Liu B, Zhao Y, Sun Y, Zhang X.-M, Lu Y. J. Org. Chem. 1999; 64: 604 17d Mao C, Wang Z, Wang Z, Ji P, Cheng J.-P. J. Am. Chem. Soc. 2016; 138: 5523 Kinetics techniques lead to lower pK a values: 18a Amyes TL, Diver ST, Richard JP, Rivas FM, Toth K. J. Am. Chem. Soc. 2004; 126: 4366 18b Richard JP, Williams G, O’Donoghue AC, Amyes TL. J. Am. Chem. Soc. 2002; 124: 2957 18c Ling-Chung S, Sales KD, Utley JH. P. J. Chem. Soc., Chem. Commun. 1990; 662 19 Martin K, Noges J, Haav K, Kadam SA, Pung A, Leito I. Eur. J. Org. Chem. 2017; 5231 20 CCDC 1957410 (6c) and CCDC 1957411 (6c·AcOH) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures 21a Fenton GW, Ingold CK. J. Chem. Soc. 1929; 2342 21b Horner L, Hoffmann H, Wippel HG, Hassel G. Chem. Ber. 1958; 91: 52 21c Corfield JR, Trippett S. J. Chem. Soc. D 1970; 1267 21d Asknes G, Songstad J. Acta Chem. Scand. 1962; 16: 1426 21e McEwen WE, Axelrad G, Zanger M, Van der Werf CA. J. Am. Chem. Soc. 1965; 87: 3948 21f Schlosser M. Angew. Chem. 1962; 74: 291 21g Nikitin K, Ortin Y, Müller-Bunz H, Gilheany DG, McGlinchey MJ. Eur. J. Org. Chem. 2018; 5260 22a Byrne PA, Ortin Y, Gilheany DG. Chem. Commun. 2015; 51: 1147 22b Byrne PA, Gilheany DG. Chem. Eur. J. 2016; 22: 9140 23a Vedejs E, Marth CF. J. Am. Chem. Soc. 1988; 110: 3948 23b Vedejs E, Fleck T. J. Am. Chem. Soc. 1989; 111: 5861 23c Robiette R, Richardson J, Aggarwal VK, Harvey JN. J. Am. Chem. Soc. 2006; 128: 2394 24 Taking into account the formation of (AcOH)2 leads to calculated reaction ΔE = –42 kcal/mol. Zusatzmaterial Zusatzmaterial Supporting Information