RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2022; 54(07): 1745-1752
DOI: 10.1055/s-0037-1610788
DOI: 10.1055/s-0037-1610788
feature
Quaternary Phosphonium Carboxylates: Structure, Dynamics and Intriguing Olefination Mechanism
Abstract
We have earlier shown how the Wittig chemistry can be done using novel Eigenbase phosphonium carboxylate reagents. Here we discuss the phenomenon of ion pairing, their solution tautomerism, solid-state structure, and mechanistic aspects of olefination. The results point to a complex process involving unfamiliar H-bond-driven ion-pair equilibria followed by standard Wittig reaction steps.
Key words
quaternary phosphonium salts - ion pairs - Wittig reaction - proton-transfer equilibrium - fluxional behaviourSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610788.
- Supporting Information
Publikationsverlauf
Eingereicht: 09. August 2021
Angenommen nach Revision: 05. November 2021
Artikel online veröffentlicht:
21. Dezember 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Marcus Y, Hefter G. Chem. Rev. 2006; 106: 4585
- 1b Winstein S, Clippinger E, Fainberg AH, Heck R, Robinson GC. J. Am. Chem. Soc. 1956; 78: 328
- 1c Winstein S, Robinson GC. J. Am. Chem. Soc. 1958; 80: 169
- 1d Hogen-Esch TE, Smid J. J. Am. Chem. Soc. 1964; 86: 669
- 2a Lestini E, Nikitin K, Müller-Bunz H, Fitzmaurice D. Chem. Eur. J. 2008; 14: 1095
- 2b Morack T, Mück-Lichtenfeld C, Gilmour R. Angew. Chem. Int. Ed. 2019; 58: 1208
- 3a Duarte F, Paton RS. J. Am. Chem. Soc. 2017; 139: 8886
- 3b Sorgenfrei N, Hioe J, Greindl J, Rothermel K, Morana F, Lokesh N, Gschwind RM. J. Am. Chem. Soc. 2016; 138: 16345
- 3c Choudhury AR, Mukherjee S. Chem. Sci. 2016; 7: 6940
- 4a Uraguchi D, Ueki Y, Ooi T. Science 2009; 326: 120
- 4b Uraguchi D, Ueki Y, Ooi T. J. Am. Chem. Soc. 2008; 130: 14088
- 5a Gohndrone TR, Lee TB, DeSilva MA, Quiroz-Guzman M, Schneider WF, Brennecke JF. ChemSusChem 2014; 7: 1970
- 5b Lee TB, Oh S, Gohndrone TR, Morales-Collazo O, Seo S, Brennecke JF, Schneider WF. J. Phys. Chem. B 2016; 120: 1509
- 7 Nikitin K, Müller-Bunz H, Gilheany DG. Chem. Commun. 2013; 49: 1434
- 8a Jennings EV, Nikitin K, Ortin Y, Gilheany DG. J. Am. Chem. Soc. 2014; 136: 16217
- 8b Nikitin K, Jennings EV, Al Sulaimi S, Ortin Y, Gilheany DG. Angew. Chem. Int. Ed. 2018; 57: 1480
- 8c Gillick-Healy MW, Jennings EV, Müller-Bunz H, Nikitin K, Gilheany DG. Chem. Eur. J. 2016; 22: 2332
- 9 Nikitin K, Müller-Bunz H, Muldoon J, Gilheany DG. Chem. Eur. J. 2017; 23: 4794
- 10a Fraser KJ, MacFarlane DR. Aust. J. Chem. 2009; 62: 309
- 10b Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
- 10c Werner T. Adv. Synth. Catal. 2009; 351: 1469
- 10d Enders D, Nguyen TV. Org. Biomol. Chem. 2012; 10: 5327
- 10e Golandaj A, Ahmad A, Ramjugernath D. Adv. Synth. Catal. 2017; 359: 3676
- 12 Firaha DS, Gibalova AV, Holloczki O. ACS Omega 2017; 2: 2901
- 13 Cattelan L, Noe M, Selva M, Demitri N, Perosa A. ChemSusChem 2015; 8: 3963
- 14 Vetter AC, Gilheany DG, Nikitin K. Org. Lett. 2021; 23: 1457
- 15a O’Brien CJ, Tellez JL, Nixon ZS, Kang LJ, Carter AL, Kunkel SR, Przeworski KC, Chass GA. Angew. Chem. Int. Ed. 2009; 48: 6836
- 15b O’Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Chem. Eur. J. 2013; 19: 15281
- 15c Rommel S, Belger C, Begouin JM, Plietker B. ChemCatChem 2015; 7: 1292
- 15d Longwitz L, Werner T. Pure Appl. Chem. 2019; 91: 95
- 15e Werner T, Hoffmann M, Deshmukh S. Eur. J. Org. Chem. 2014; 6873
- 15f Coyle EE, Doonan BJ, Holohan AJ, Walsh KA, Lavigne F, Krenske EH, O’Brien CJ. Angew. Chem. Int. Ed. 2014; 53: 12907
- 15g Hoffmann M, Deshmukh S, Werner T. Eur. J. Org. Chem. 2015; 4532
- 16a Dunne EC, Coyne EJ, Crowley PB, Gilheany DG. Tetrahedron Lett. 2002; 43: 2449
- 16b Byrne PA, Gilheany DG. J. Am. Chem. Soc. 2012; 134: 9225
- 16c Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
- 17a Zhang X.-M, Bordwell FG. J. Am. Chem. Soc. 1994; 116: 968
- 17b Fu Y, Wang H.-J, Chong S.-S, Guo Q.-X, Liu L. J. Org. Chem. 2009; 74: 810
- 17c Cheng J.-P, Liu B, Zhao Y, Sun Y, Zhang X.-M, Lu Y. J. Org. Chem. 1999; 64: 604
- 17d Mao C, Wang Z, Wang Z, Ji P, Cheng J.-P. J. Am. Chem. Soc. 2016; 138: 5523
- 18a Amyes TL, Diver ST, Richard JP, Rivas FM, Toth K. J. Am. Chem. Soc. 2004; 126: 4366
- 18b Richard JP, Williams G, O’Donoghue AC, Amyes TL. J. Am. Chem. Soc. 2002; 124: 2957
- 18c Ling-Chung S, Sales KD, Utley JH. P. J. Chem. Soc., Chem. Commun. 1990; 662
- 19 Martin K, Noges J, Haav K, Kadam SA, Pung A, Leito I. Eur. J. Org. Chem. 2017; 5231
- 20 CCDC 1957410 (6c) and CCDC 1957411 (6c·AcOH) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 21a Fenton GW, Ingold CK. J. Chem. Soc. 1929; 2342
- 21b Horner L, Hoffmann H, Wippel HG, Hassel G. Chem. Ber. 1958; 91: 52
- 21c Corfield JR, Trippett S. J. Chem. Soc. D 1970; 1267
- 21d Asknes G, Songstad J. Acta Chem. Scand. 1962; 16: 1426
- 21e McEwen WE, Axelrad G, Zanger M, Van der Werf CA. J. Am. Chem. Soc. 1965; 87: 3948
- 21f Schlosser M. Angew. Chem. 1962; 74: 291
- 21g Nikitin K, Ortin Y, Müller-Bunz H, Gilheany DG, McGlinchey MJ. Eur. J. Org. Chem. 2018; 5260
- 22a Byrne PA, Ortin Y, Gilheany DG. Chem. Commun. 2015; 51: 1147
- 22b Byrne PA, Gilheany DG. Chem. Eur. J. 2016; 22: 9140
- 23a Vedejs E, Marth CF. J. Am. Chem. Soc. 1988; 110: 3948
- 23b Vedejs E, Fleck T. J. Am. Chem. Soc. 1989; 111: 5861
- 23c Robiette R, Richardson J, Aggarwal VK, Harvey JN. J. Am. Chem. Soc. 2006; 128: 2394
- 24 Taking into account the formation of (AcOH)2 leads to calculated reaction ΔE = –42 kcal/mol.
Kinetics techniques lead to lower pK a values: