Synthesis 2022; 54(09): 2282-2288
DOI: 10.1055/s-0037-1610792
paper

Synthesis of 5-Trifluoromethyl-Substituted (Z)-N,N-Dimethyl-N′-(pyrazin-2-yl)formimidamides from 2-Aminopyrazines, LiI/Selectfluor, FSO2CF2CO2Me and DMF under Cu Catalysis

Jiao Hu
,
Shengyu Li
,
Xiaolin Wang
,
Sheng-Cai Zheng
,
Xiaoming Zhao
We gratefully acknowledge the National Natural Science Foundation of China (NSFC) (Grant no. 21971193) and the Fundamental Research Funds for the Central Universities for generous financial support.


Abstract

The synthesis of 5-trifluoromethyl-substituted (Z)-N,N-dimethyl-N′-(pyrazin-2-yl)formimidamides via the iodination of 2-aminopyrazines with Selectfluor/LiI followed by a domino trifluoromethylation with FSO2CF2CO2Me and a condensation with DMF in the presence of CuI is realized under mild conditions. This three-step method offers CF3-substituted (Z)-N,N-dimethyl-N′-(pyrazin-2-yl)formimidamides in yields of 55–70% and with high regioselectivities. LiI serves as an iodine source, whilst DMF functions as both a solvent and a condensation reagent. The regioselectivity of these trifluoromethylation reactions is strongly dependent upon the substituent pattern on the 2-aminopyrazines. A possible mechanism for this method is also discussed.

Supporting Information



Publication History

Received: 17 September 2021

Accepted after revision: 15 December 2021

Article published online:
09 February 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Wang J, Sanchez RM, Acena JL, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 1b Zhou Y, Wang J, Gu Z, Wang SN, Zhu W, Acena JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 1c Mei H, Han J, Fustero S, Medio-Simon M, Sedgwick DM, Santi C, Ruzziconi R, Soloshonok VA. Chem. Eur. J. 2019; 25: 11797
    • 1d Xie Q, Hu J. Chin. J. Chem. 2020; 38: 202
  • 2 Choi GS, Choo HJ, Kim BG, Ahn JH. Microb. Cell Fact. 2020; 19: 73
  • 3 Wong MH. WO2020056162A1 2020
  • 4 Liu M, Obeng AO. J. Clin. Pharmacol. 2020; 60: 429
    • 5a Mueller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 5b Ye YD, Kunzi SA, Sanford MS. Org. Lett. 2012; 14: 4979
    • 5c Yang F, Klumphu P, Liang YM, Lipshutz BH. Chem. Commun. 2014; 50: 936
    • 6a Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 6b Préville C, Bonaventure P, Koudriakova T, Lord B, Nepomuceno D, Rizzolio M, Mani N, Coe KJ, Ndifor A, Dugovic C, Dvorak CA, Coate H, Pippel DJ, Fitzgerald A, Allison B, Lovenberg TW, Carruthers NI, Shireman BT. ACS Med. Chem. Lett. 2020; 11: 2002
  • 7 Fujiwara T, O’Hagan D. J. Fluorine Chem. 2014; 167: 16
  • 8 Berger R, Resnati G, Metrangolo P, Weber E, Hulliger J. Chem. Soc. Rev. 2011; 40: 3496
    • 9a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 9b Zhang CP, Chen QY, Guo Y, Xiao JC, Gu YC. Chem. Rev. 2014; 261: 28
    • 9c Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 9d Maher K, Shireen M. Orient. J. Chem. 2018; 34: 2708

      For selected examples, see:
    • 10a Ruppert I, Schlich K, Volbach W. Tetrahedron Lett. 1984; 25: 2195
    • 10b Prakash GK. S, Krishnamurti R, Olah GA. J. Am. Chem. Soc. 1989; 111: 393
    • 10c Chen Q.-Y, Wu S.-W. J. Chem. Soc., Chem. Commun. 1989; 705
    • 10d Prakash GK. S, Hu J, Olah GA. Org. Lett. 2003; 5: 3253
    • 10e Zhang XM, Wang J, Wang ZH. Org. Lett. 2015; 17: 2086
    • 10f Michael M, Wade W, Nathaniel KS. Angew. Chem. Int. Ed. 2018; 57: 1381

      For selected examples, see:
    • 11a Teruo U, Sumi I. Tetrahedron Lett. 1990; 31: 3579
    • 11b Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 11c Cai Z. Org. Biomol. Chem. 2014; 12: 6580
    • 11d Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650

      For selected examples, see:
    • 12a Langlois BR, Laurent E, Roidot N. Tetrahedron Lett. 1991; 32: 7525
    • 12b Wang X, Ye Y, Zhang S, Feng J, Xu Y, Zhang Y, Wang J. J. Am. Chem. Soc. 2011; 133: 16410
    • 12c Wu X, Chu L, Qing FL. Angew. Chem. Int. Ed. 2013; 52: 2198
    • 12d Yu P, Lin J.-S, Li L, Zheng S.-C, Xiong Y.-P, Zhao L.-J, Tan B, Liu X.-Y. Angew. Chem. Int. Ed. 2014; 53: 11890
    • 12e Cassé M, Nisole C, Dossmann H, Gimbert Y, Fourquez J.-M, Haberkorn L, Ollivier C, Fensterbank L. Sci. China Chem. 2019; 62: 1542
    • 13a Tomashenko OA, Escudero-Adán EC, Martínez Belmonte M, Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
    • 13b Zhao G, Wu H, Xiao ZW, Chen QY, Liu C. RSC Adv. 2016; 6: 50250
    • 13c Zhao SY, Guo Y, Han EJ, Luo J, Liu HM, Liu C, Xie WD, Zhang W, Wang MY. Org. Chem. Front. 2018; 5: 1143
  • 14 Zhang CP, Wang ZL, Chen QY, Zhang CT, Gu YC, Xiao JC. Angew. Chem. Int. Ed. 2011; 50: 1896
  • 15 Bian YJ, Qu XY, Chen YQ, Li J, Liu L. Molecules 2018; 23: 2225
    • 16a Zhi P, Xi ZW, Wang DY, Wang W, Liang XZ, Tao FF, Shen RP, Shen YM. New J. Chem. 2019; 43: 709
    • 16b Kwak SH, Gong YD. Tetrahedron 2013; 69: 7107
    • 17a Tian Y, Zhao M, Zhao X, Zhou G. J. Fluorine Chem. 2019; 218: 111
    • 17b Hu J, Zhou G, Tian YW, Zhao X. Org. Biomol. Chem. 2019; 17: 6342
  • 18 CCDC 1998685 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 19 Toste D, McNulty J, Still IW. J. Synth. Commun. 1994; 24: 1617
  • 20 Collibee SE, Bergnes G, Muci A, Browne WF, Garard M, Hinken AC, Russell AJ, Suehiro I, Hartman J, Kawas R, Lu P.-P, Lee KH, Marquez D, Tomlinson M, Xu D, Kennedy A, Hwee D, Schaletzky J, Leung K, Malik FI, Morgans DJ, Morgan BP. ACS Med. Chem. Lett. 2018; 9: 354
  • 21 Bartolomé-Nebreda JM, Alonso de Diego SA, Artola M, Delgado F, Delgado Ó, Martín-Martín ML, Martínez-Viturro CM, Pena M. Á, Tong HM, Van Gool M, Alonso JM, Fontana A, Macdonald GJ, Megens A, Langlois X, Somers M, Vanhoof G, Conde-Ceide S. J. Med. Chem. 2015; 58: 978
  • 22 Daniel M, Hiebel MA, Guillaumet G, Pasquinet E, Suzenet F. Chem. Eur. J. 2020; 26: 1525
    • 23a Wang C, Cai J, Zhang M, Zhao X. J. Org. Chem. 2017; 82: 1260
    • 23b Zhou G, Tian Y, Zhao X, Dan W. Org. Lett. 2018; 20: 4858
    • 23c Tian Y, Zhou G, Zhao X, Dan W. Acta Chim. Sinica 2018; 76: 962
    • 23d Zhao M, Cai J, Zhao X. Org. Chem. Front. 2019; 6: 426
  • 24 Konovalov AI, Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2014; 136: 13410
  • 25 Schroeder K, Enthaler S, Join B, Junge K, Beller M. Adv. Synth. Catal. 2010; 352: 1771