Synthesis, Table of Contents Synthesis 2019; 51(11): 2278-2286DOI: 10.1055/s-0037-1610877 feature © Georg Thieme Verlag Stuttgart · New York Directed ortho-Metalation of Arenesulfonyl Fluorides and Aryl Fluorosulfates Alicja Talko , Damian Antoniak , Michał Barbasiewicz * Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland Email: barbasiewicz@chem.uw.edu.pl › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Studies on directed ortho-metalation (DoM) of arenesulfonyl fluorides (ArSO2F) with in situ electrophile trapping are presented. Under optimized conditions (LDA, THF, –78 °C), a series of model substrates was mono- and difunctionalized with trimethylsilyl chloride in good yields. The synthetic results reveal powerful directing character of the SO2F group, being ahead of bromine and methoxy substituents. Under the same metalation conditions, aryl fluorosulfates (ArOSO2F) display fragmentation to arynes and migration of the SO2F group to the ortho position (anionic thia-Fries rearrangement). Key words Key wordssulfonyl fluorides - fluorosulfates - directed ortho-metalation - SuFEx - orthogonal reactivity - in situ trap - lithium amides - anionic thia-Fries rearrangement Full Text References References 1 Chinthakindi PK, Arvidsson PI. Eur. J. Org. Chem. 2018; 3648 2 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430 3 Fattah TA, Saeed A, Albericio F. J. Fluorine Chem. 2018; 213: 87 4 Narayanan A, Jones LH. Chem. Sci. 2015; 6: 2650 5 Dondoni A, Marra A. Org. Biomol. Chem. 2017; 15: 1549 6 Yatvin J, Brooks K, Locklin J. Chem. Eur. J. 2016; 22: 16348 7 Mukherjee P, Woroch CP, Cleary L, Rusznak M, Franzese RW, Reese MR, Tucker JW, Humphrey JM, Etuk SM, Kwan SC, am Ende CW, Ball ND. Org. Lett. 2018; 20: 3943 8 Zheng Q, Dong J, Sharpless KB. J. Org. Chem. 2016; 81: 11360 9 Talko A, Barbasiewicz M. ACS Sustainable Chem. Eng. 2018; 6: 6693 10 Bogolubsky AV, Moroz YS, Mykhailiuk PK, Pipko SE, Konovets AI, Sadkova IV, Tolmachev A. ACS Comb. Sci. 2014; 16: 192 11 Tribby AL, Rodríguez I, Shariffudin S, Ball ND. J. Org. Chem. 2017; 82: 2294 12 Kagabu S, Hara K, Takahashi J. J. Chem. Soc., Chem. Commun. 1991; 408 13 Kagabu S, Shimizu C, Takahashi J, Hara K, Koketsu M, Ishida M. Bull. Soc. Chim. Fr. 1992; 129: 435 14 Dubbaka SR, Vogel P. Tetrahedron 2005; 61: 1523 15 Górski B, Talko A, Basak T, Barbasiewicz M. Org. Lett. 2017; 19: 1756 16 Górski B, Basiak D, Talko A, Basak T, Mazurek T, Barbasiewicz M. Eur. J. Org. Chem. 2018; 1774 17 For a review, see: Snieckus V. Chem. Rev. 1990; 90: 879 18 For a recent report, see: Miah MA. J, Sibi MP, Chattopadhyay S, Familoni OB, Snieckus V. Eur. J. Org. Chem. 2018; 440 19 Schneider C, Broda E, Snieckus V. Org. Lett. 2011; 13: 3588 20 Fleming I, Mah T. J. Chem. Soc., Perkin Trans. 1 1976; 1577 21 Stoyanovich FM, Gol’dfarb YaL, Marakatkina MA, Karpenko RG. Russ. Chem. Bull. 1980; 29: 129 ; DOI: 10.1007/BF00951894 22 Bonfiglio JN. J. Org. Chem. 1986; 51: 2833 23 Spangler LA. Tetrahedron Lett. 1996; 37: 3639 24 Iwao M, Iihama T, Mahalanabis KK, Perrier H, Snieckus V. J. Org. Chem. 1989; 54: 24 25 Sumii Y, Taniguchi M, Xu X.-H, Tokunaga E, Shibata N. Tetrahedron 2018; 74: 5635 26 Brikci-Nigassa NM, Bentabed-Ababsa G, Erb W, Mongin F. Synthesis 2018; 50: 3615 27 Caron S, Hawkins JM. J. Org. Chem. 1998; 63: 2054 28 Kristensen J, Lysén M, Vedsø P, Begtrup M. Org. Lett. 2001; 3: 1435 29 Luliński S, Serwatowski J. J. Org. Chem. 2003; 68: 9384 30 Under optimized reaction conditions (LDA, TMSCl, –78 °C, THF) benzenesulfonyl chloride failed to give the expected silylation products (no 1H NMR resonances at δ = +0.3 to +0.5). Instead, we observed that the PhSO2Cl slowly converts into ill-defined products, with poor mass recovery after workup and chromatography. 31 For an attempt of metalation of benzenesulfonyl fluoride (1a) with LiTMP giving a polymeric product, see: Eisch JJ, Qian Y, Chiu CS. J. Org. Chem. 1996; 61: 1392 32 For a functionalization of 1-substituted 2,6-bis(silylated)arenes by metalation, see: Bellan AB, Knochel P. Angew. Chem. Int. Ed. 2019; 58: 1838 33 For an application of sterically hindered 2,4,6-tri(isopropyl)benzenesulfonamides as artificial acylases, see: Kosugi Y, Akakura M, Ishihara K. Tetrahedron 2007; 63: 6191 34 Alo BI, Familoni OB, Marsais F, Queguiner G. J. Chem. Soc., Perkin Trans. 1 1990; 1611 35 MacNeil SL, Familoni OB, Snieckus V. J. Org. Chem. 2001; 66: 3662 36 An inseparable mixture of 2-bromo-3,6-bis(trimethylsilyl)benzenesulfonyl fluoride and most likely 5-bromo-2-(trimethylsilyl)benzenesulfonyl fluoride (2:3) was formed in ca. 76% yield. The latter product could be formed by the bromine atom shift of the C-3 metalated monosilylated product 2e, with decrease of basicity and release of strain as driving forces. For a ‘halogen dance’ process running on a similar system, see: Mongin F, Marzi E, Schlosser M. Eur. J. Org. Chem. 2001; 2771 37 Compare: Frye LL, Sullivan EL, Cusack KP, Funaro JM. J. Org. Chem. 1992; 57: 697 38 For Ir-catalyzed 2-borylation of methyl benzoates, see: Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058 39 Attempt at in situ methylation of 1a with MeI (2.4 equiv) in the presence of LDA (1.2 equiv) in THF under argon (30 min at –78 °C, then 30 min at r.t.) gave a hardly separable mixture of 1a and 2-methylbenzenesulfonyl fluoride: 1H NMR (400 MHz, CDCl3): δ = 8.04–8.00 (m, 1 H), 7.61 (td, J = 7.6, 1.4 Hz, 1 H), 7.43–7.36 (m, 2 H), 2.67 (s, 3 H). 19F NMR (376 MHz, CDCl3): δ = 59.77, 59.72 (resonance of 34S molecule, ca. 5%). The mixture (58:42, according to GC) was partially separated by chromatography to few fractions of different component ratio in total yield of ca. 50%. More polar fractions after chromatography contained numerous ill-defined by-products. 40 Li X, Hewgley JB, Mulrooney CA, Yang J, Kozlowski MC. J. Org. Chem. 2003; 68: 5500 41 Gaillard S, Papamicaël C, Dupas G, Marsais F, Leacher V. Tetrahedron 2005; 61: 8138 42 Compare: Mao S, Gao Y.-R, Zhu X.-Q, Guo D.-D, Wang Y.-Q. Org. Lett. 2015; 17: 1692 43 For a review of related process, see: Chelucci G. Chem. Rev. 2012; 112: 1344 44 Revathi L, Ravindar L, Leng J, Rakesh KP, Qin H.-L. Asian J. Org. Chem. 2018; 7: 662 45 For applications of aryl fluorosulfates, see: Martín-Gago P, Olsen CA. Angew. Chem. Int. Ed. 2019; 58: 957 46 See, for example: Zhang E, Tang J, Li S, Wu P, Moses JE, Sharpless KB. Chem. Eur. J. 2016; 22: 5692 ; and references cited therein 47 Similar fragmentation pathway was reported for o-(trimethylsilyl)aryl fluorosulfates, which undergo a fluoride-induced decomposition to arynes: Chen Q, Yu H, Xu Z, Lin L, Jiang X, Wang R. J. Org. Chem. 2015; 80: 6890 48 Wickham PP, Hazen KH, Guo H, Jones G, Reuter KH, Scott WJ. J. Org. Chem. 1991; 56: 2045 49 Charmant JP. H, Dyke AM, Lloyd-Jones GC. Chem. Commun. 2003; 380 50 Dyke AM, Gill DM, Harvey JN, Hester AJ, Lloyd-Jones GC, Muñoz MP, Shepperson IR. Angew. Chem. Int. Ed. 2008; 47: 5067 51 For a remote anionic thia-Fries rearrangement, see: Xu X.-H, Taniguchi M, Azuma A, Liu GK, Tokunaga E, Shibata N. Org. Lett. 2013; 15: 686 52 For a fluoride-induced anionic thia-Fries rearrangement, see: Hall C, Henderson JL, Ernouf G, Greaney MF. Chem. Commun. 2013; 49: 7602 53 Veryser C, Demaerel J, Bieliunas V, Gilles P, De Borggraeve WM. Org. Lett. 2017; 19: 5244 54 Culbertson BM, Dietz S. J. Chem. Soc. C 1968; 992 55 Tang L, Yang Y, Wen L, Yang X, Wang Z. Green Chem. 2016; 18: 1224 56 Chinthakindi PK, Govender KB, Kumar AS, Kruger HG, Govender T, Naicker T, Arvidsson PI. Org. Lett. 2017; 19: 480 57 Hsua Y.-L, Yang C.-C, Chou T.-C, Tai C.-H, Chen L.-Y, Fu S.-L, Lin J.-J, Lo L.-C. Tetrahedron 2016; 72: 58 58 Dong J, Sharpless KB, Kelly JW, Chen W. (The Scripps Research Institute) Patent US10117840, 2018 59 CCDC 1894350 (5) and CCDC 1894351 (8) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 60 Lee P.-Y, Liang P, Yu W.-Y. Org. Lett. 2017; 19: 2082 61 Cho S, Wang Q. Tetrahedron 2018; 74: 3325 62 Lei Z, Liu H, Cai M. J. Organomet. Chem. 2017; 852: 54 Supplementary Material Supplementary Material Supporting Information