Synthesis 2019; 51(03): 747-756
DOI: 10.1055/s-0037-1611056
paper
© Georg Thieme Verlag Stuttgart · New York

N-Oxide-Controlled Chemoselective Reduction of Nitrofuroxans

a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation   eMail: fershtat@bk.ru
,
Dmitry M. Bystrov
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation   eMail: fershtat@bk.ru
b   Department of Chemistry, Moscow State University, 119991 Moscow, Leninskie Gory 1-3, Russian Federation
,
Egor S. Zhilin
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation   eMail: fershtat@bk.ru
b   Department of Chemistry, Moscow State University, 119991 Moscow, Leninskie Gory 1-3, Russian Federation
,
Nina N. Makhova
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation   eMail: fershtat@bk.ru
› Institutsangaben
This work was supported by the Russian Foundation for Basic Research (project 18-03-00332) and the Russian President’s Council for Grants (project MK-1302.2017.3).
Weitere Informationen

Publikationsverlauf

Received: 07. Juli 2018

Accepted after revision: 31. August 2018

Publikationsdatum:
21. September 2018 (online)


Abstract

A facile and chemoselective SnCl2-mediated mild reduction of regioisomeric 3- and 4-nitrofuroxans for the synthesis of amino­furazans and aminofuroxans in good yields is developed. Reduction of 4-nitrofuroxans results in the selective formation of 4-aminofuroxans, while analogous reduction of 3-nitrofuroxans affords 3-aminofurazans as a result of simultaneous reduction of the nitro group and exocyclic N–O bond.

Supporting Information

 
  • References

    • 1a Paton RM. 1,2,5-Oxadiazoles . In Comprehensive Heterocyclic Chemistry II . Vol. 4. Katritzky AR. Rees CW. Scriven EF. V. Pergamon; Oxford: 1996: 229-266
    • 1b Nikonov GN. Bobrov S. 1,2,5-Oxadiazoles . In Comprehensive Heterocyclic Chemistry III . Vol. 5. Katritzky AR. Ramsden CA. V. Scriven EF. Taylor RJ. K. Elsevier; Amsterdam: 2008: 316-393
    • 1c Fershtat LL. Makhova NN. Russ. Chem. Rev. 2016; 85: 1097
    • 1d Fershtat LL. Makhova NN. ChemMedChem 2017; 12: 622
  • 2 Segretti ND. Serafim RA. M. Segretti MC. F. Miyata M. Coelho FR. Augusto O. Ferreira EI. Bioorg. Med. Chem. Lett. 2016; 26: 3988
  • 3 Guglielmo S. Cortese D. Vottero F. Rolando B. Kommer VP. Williams DL. Fruttero R. Gasco A. Eur. J. Med. Chem. 2014; 84: 135
    • 4a Kulikov AS. Larin AA. Fershtat LL. Anikina LV. Pukhov SA. Klochkov SG. Struchkova MI. Romanova AA. Ananyev IV. Makhova NN. ARKIVOC 2017; (iii): 250
    • 4b Stepanov AI. Astrat’ev AA. Sheremetev AB. Lagutina NK. Palysaeva NV. Tyurin AYu. Aleksandrova NS. Sadchikova NP. Suponitsky KYu. Atamanenko OP. Konyushkin LD. Semenov RV. Firgang SI. Kiselyov AS. Semenova MN. Semenov VV. Eur. J. Med. Chem. 2015; 94: 237
    • 5a Ustyuzhanina NE. Fershtat LL. Gening ML. Nifantiev NE. Makhova NN. Mendeleev Commun. 2016; 26: 513
    • 5b Ustyuzhanina NE. Fershtat LL. Gening ML. Nifantiev NE. Makhova NN. Mendeleev Commun. 2018; 28: 49
    • 6a Ferioli R. Folco GC. Ferretti C. Gasco AM. Medana C. Fruttero R. Civelli M. Gasco A. Br. J. Pharmacol. 1995; 114: 816
    • 6b Bohn H. Brendel J. Martorana PA. Schönafinger K. Br. J. Pharmacol. 1995; 114: 1605

      For selected examples, see:
    • 7a Zhang J. Shreeve JM. J. Am. Chem. Soc. 2014; 136: 4437
    • 7b He C. Shreeve JM. Angew. Chem. Int. Ed. 2016; 55: 772
    • 7c Zhang J. Mitchell LA. Parrish DA. Shreeve JM. J. Am. Chem. Soc. 2015; 137: 10532
    • 7d Lempert DB. Sheremetev AB. Chem. Heterocycl. Compd. 2016; 52: 1070
    • 7e Pagoria PF. Zhang M.-X. Zuckerman NB. DeHope AJ. Parrish DA. Chem. Heterocycl. Compd. 2017; 53: 760
    • 7f Fershtat LL. Ovchinnikov IV. Epishina MA. Romanova AA. Lempert DB. Muravyev NV. Makhova NN. ChemPlusChem 2017; 82: 1315
    • 7g Fershtat LL. Epishina MA. Kulikov AS. Ovchinnikov IV. Ananyev IV. Makhova NN. Tetrahedron 2015; 71: 6764
    • 8a Makhova NN. Kulikov AS. Russ. Chem. Rev. 2013; 82: 1007
    • 8b Fischer D. Klapoetke TM. Stierstorfer J. Eur. J. Inorg. Chem. 2014; 5808
    • 8c Wei H. He C. Zhang J. Shreeve JM. Angew. Chem. Int. Ed. 2015; 54: 9367
    • 8d He C. Gao H. Imler GH. Parrish DA. Shreeve JM. J. Mater. Chem. A 2018; 6: 9391
    • 8e Fershtat LL. Radzhabov MR. Romanova AA. Ananyev IV. Makhova NN. ARKIVOC 2017; (iii): 140
    • 8f Shin D.-S. Masciocchi D. Gelain A. Villa S. Barlocco D. Meneghetti F. Pedretti A. Han Y.-M. Han DC. Kwon B.-M. Legnani L. Toma L. Med. Chem. Commun. 2010; 1: 156
    • 8g Masciocchi D. Villa S. Meneghetti F. Pedretti A. Barlocco D. Legnani L. Toma L. Kwon B.-M. Nakano S. Asai A. Gelain A. Med. Chem. Commun. 2012; 3: 592
    • 9a Sheremetev AB. Shamshina YuL. Dmitriev DE. Russ. Chem. Bull., Int. Ed. 2005; 54: 1032
    • 9b Sheremetev AB. Russ. Chem. Bull., Int. Ed. 2005; 54: 1057
    • 10a Shaposhnikov SD. Pirogov SV. Mel’nikova SF. Tselinsky IV. Näther C. Graening T. Traulsen T. Friedrichsen W. Tetrahedron 2003; 59: 1059
    • 10b Samsonov VA. Sal’nikov GE. Genayev AM. Russ. Chem. Bull., Int. Ed. 2009; 58: 2369
    • 11a Boulton AJ. Mathur SS. J. Org. Chem. 1973; 38: 1054
    • 11b Pollet P. Gelin S. Synthesis 1979; 977
    • 11c Zelenov MP. Frolova GM. Mel’nikova SF. Tselinskii IV. Chem. Heterocycl. Compd. 1982; 18: 21
    • 11d Takahashi TT. Satoh JY. Saitoh K. J. Chem. Soc., Perkin Trans. 1 1990; 2277
    • 12a Olofson RA. Michelman JS. J. Am. Chem. Soc. 1964; 86: 1863
    • 12b Britsun VN. Borisevich AN. Samoilenko LS. Lozinskii MO. Russ. J. Org. Chem. 2005; 41: 745
  • 13 Neel AJ. Zhao R. Org. Lett. 2018; 20: 2024
    • 14a Gagneux AR. Meier R. Helv. Chim. Acta 1970; 53: 1883
    • 14b Bystrov DM. Zhilin ES. Fershtat LL. Romanova AA. Ananyev IV. Makhova NN. Adv. Synth. Catal. 2018; 360: 3157
  • 15 Makhova NN. Blinnikov AN. Khme’nitskii LI. Mendeleev Commun. 1995; 5: 56
  • 16 Ovchinnikov IV. Blinnikov AN. Makhova NN. Mendeleev Commun. 1995; 5: 58
    • 17a Makhova NN. Fershtat LL. Tetrahedron Lett. 2018; 59: 2317
    • 17b Fershtat LL. Struchkova MI. Goloveshkin AS. Bushmarinov IS. Makhova NN. Heteroat. Chem. 2014; 25: 226
    • 17c Matsubara R. Ando A. Saeki Y. Eda K. Asada N. Tsutsumi T. Shin YS. Hayashi M. J. Heterocycl. Chem. 2016; 53: 1094
    • 17d Matsubara R. Eguchi S. Ando A. Hayashi M. Org. Biomol. Chem. 2017; 15: 1965
    • 17e Ando A. Matsubara R. Takazawa S. Shimada T. Hayashi M. Asian J. Org. Chem. 2016; 5: 886
    • 18a Fershtat LL. Epishina MA. Ovchinnikov IV. Struchkova MI. Romanova AA. Ananyev IV. Makhova NN. Tetrahedron Lett. 2016; 57: 5685
    • 18b Fershtat LL. Larin AA. Epishina MA. Kulikov AS. Ovchinnikov IV. Ananyev IV. Makhova NN. Tetrahedron Lett. 2016; 57: 4268
  • 19 Wieland H. Liebigs Ann. Chem. 1903; 328: 154
    • 20a Chen X.-L. Ai B.-R. Dong Y. Zhang X.-M. Wang J.-Y. Tetrahedron Lett. 2017; 58: 3646
    • 20b Defilippi A. Sorba G. Calvino R. Garrone A. Gasco A. Orsetti M. Arch. Pharm. 1988; 321: 77
  • 21 Tsedilin AM. Fakhrutdinov AN. Eremin DB. Zalesskiy SS. Chizhov AO. Kolotyrkina NG. Ananikov VP. Mendeleev Commun. 2015; 25: 454
  • 22 Zabka J. Simkova L. Jalovy Z. Polasek M. Eur. J. Mass Spectrom. 2014; 20: 233