Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(03): 739-746
DOI: 10.1055/s-0037-1611058
DOI: 10.1055/s-0037-1611058
paper
Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis
Financial support from the National Natural Science Foundation of China (21602232) and the Natural Science Foundation of Shanxi Province (201701D221057) are gratefully acknowledged.Further Information
Publication History
Received: 26 July 2018
Accepted after revision: 07 September 2018
Publication Date:
27 September 2018 (online)

Abstract
It is promising and challenging to achieve the effective construction of carbonates using CO2 and a non-noble metal catalyst. Herein, selective catalytic conversion of CO2 and switchable alcohol candidates to produce linear or cyclic carbonates and α-hydroxy ketones via effective zinc catalyst was developed. A series of primary alcohols and cyclohexanol, 1,2-diols, and water can serve as nucleophiles to give alkyl or aryl 2-substituted-3-oxobutan-2-yl carbonates, substituted 1,3-dioxolan-2-ones, 3-substituted 3-hydroxybutan-2-ones, respectively with excellent selectivity and high yields.
Key words
carbon dioxide utilization - carbonates - zinc catalysis - multicomponent reaction - synthetic methodsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611058.
- Supporting Information
-
References
- 1a Yang Z.-Z, He L.-N, Gao J, Liu A.-H, Yu B. Energy Environ. Sci. 2012; 5: 6602
- 1b Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
- 1c Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
- 1d He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620
- 1e Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem. Rev. 2015; 115: 12936
- 1f Song Q.-W, Zhou Z.-H, He L.-N. Green Chem. 2017; 19: 3707
- 1g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. Green Chem. 2017; 19: 5614
- 2a Lu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
- 2b Zhang H, Liu H.-B, Yue J.-M. Chem. Rev. 2014; 114: 883
- 2c Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem. Rev. 2010; 110: 4554
- 2d Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353
- 2e Shaikh RR, Pornpraprom S, D’Elia V. ACS Catal. 2018; 8: 419
- 2f Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Top. Curr. Chem. 2017; 375: 50
- 3a Lang X.-D, He L.-N. Chem. Rec. 2016; 16: 1337
- 3b Parker HL, Sherwood J, Hunt AJ, Clark JH. ACS Sustainable Chem. Eng. 2014; 2: 1739
- 3c Sathish M, Sreeram KJ, Rao JR, Nair BU. ACS Sustainable Chem. Eng. 2016; 4: 1032
- 3d Sonnati MO, Amigoni S, de Givenchy EP. T, Darmanin T, Choulet O, Guittard F. Green Chem. 2013; 15: 283
- 4a Shaikh AA. G, Sivaram S. Chem. Rev. 1996; 96: 951
- 4b Song JL, Zhang BB, Wu TB, Yang GY, Han BX. Green Chem. 2011; 13: 922
- 4c Huang S, Yan B, Wang S, Ma X. Chem. Soc. Rev. 2015; 44: 3079
- 5a Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
- 5b Sun N, Chen M, Liu Y. J. Org. Chem. 2014; 79: 4055
- 5c Stainforth NE, Cutting GA, John MP, Willis MC. Tetrahedron: Asymmetry 2009; 20: 741
- 6 Gennen S, Grignard B, Tassaing T, Jérôme C, Detrembleur C. Angew. Chem. Int. Ed. 2017; 56: 10394
- 7a Cá ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M. Adv. Synth. Catal. 2011; 353: 133
- 7b Zhou ZH, Song QW, Xie JN, Ma R, He LN. Chem. Asian J. 2016; 11: 2065
- 7c Hu JY, Ma J, Lu L, Qian QL, Zhang ZF, Xie C, Han BX. ChemSusChem 2017; 10: 1292
- 8a Peña-López M, Neumann H, Beller M. Eur. J. Org. Chem. 2016; 3721
- 8b Cuesta-Aluja L, Masdeu-Bultó AM. ChemSelect 2016; 1: 2065
- 8c Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, Rieger B. Catal. Sci. Technol. 2015; 5: 118
- 9a Shen Y.-M, Duan W.-L, Shi M. J. Org. Chem. 2003; 68: 1559
- 9b Ghosh A, Ramidi P, Pulla S, Sullivan SZ, Collom SL, Gartia Y, Munshi P, Biris AS, Noll BC, Berry BC. Catal. Lett. 2010; 137: 1
- 9c Paddock RL, Hiyama Y, McKay JM, Nguyen ST. Tetrahedron Lett. 2004; 45: 2023
- 10a Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
- 10b Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
- 10c Ninokata R, Yamahira T, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2017; 56: 208
- 11a Ma R, He L.-N, Zhou Y.-B. Green Chem. 2016; 18: 226
- 11b Li F, Xiao L, Xia C, Hu B. Tetrahedron Lett. 2004; 45: 8307
- 11c Cuesta-Aluja L, Campos-Carrasco A, Castilla J, Reguero M, Masdeu-Bultó AM, Aghmiz A. J. CO2 Util. 2016; 14: 10
- 11d Mercadé E, Zangrando E, Claver C, Godard C. ChemCatChem 2016; 8: 234
- 11e Hu JY, Ma J, Zhu QG, Qian QL, Han HL, Mei QQ, Han BX. Green Chem. 2016; 18: 382
- 11f Liu X, Wang M.-Y, Wang S.-Y, Wang Q, He L.-N. ChemSusChem 2017; 10: 1210
- 11g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. ChemSusChem 2017; 10: 1501
- 11h Desens W, Kohrt C, Spannenberga A, Werner T. Org. Chem. Front. 2016; 3: 156
- 12 Song Q.-W, Chen W.-Q, Ma R, Yu A, Li Q.-Y, Chang Y, He L.-N. ChemSusChem 2015; 8: 821
- 13 Zhou Z.-H, Song Q.-W, He L.-N. ACS Omega 2017; 2: 337
- 14 Hoyos P, Sinisterra J.-V, Molinari F, Alcántara AR, de María PD. Acc. Chem. Res. 2010; 43: 288
- 15 He H, Qi C, Hu X, Guan Y, Jiang H. Green Chem. 2014; 16: 3729
- 16 Zhao Y, Yang Z, Yu B, Zhang H, Xu H, Hao L, Han B, Liu Z. Chem. Sci. 2015; 6: 2297
For selected reviews, see:
For selected examples, see:
For selected examples of Fe catalysis, see:
For selected examples of Co catalysis, see:
For selected examples of Ni catalysis, see:
For selected examples of Zn catalysis, see: