Synthesis, Inhaltsverzeichnis Synthesis 2019; 51(03): 739-746DOI: 10.1055/s-0037-1611058 paper © Georg Thieme Verlag Stuttgart · New York Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis Qing-Wen Song * State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, South Taoyuan Road 27, Taiyuan, 030001, P. R. China eMail: songqingwen@sxicc.ac.cn eMail: pingliu@sxicc.ac.cn , Qing-Ning Zhao , Jing-Yuan Li , Kan Zhang , Ping Liu* › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract It is promising and challenging to achieve the effective construction of carbonates using CO2 and a non-noble metal catalyst. Herein, selective catalytic conversion of CO2 and switchable alcohol candidates to produce linear or cyclic carbonates and α-hydroxy ketones via effective zinc catalyst was developed. A series of primary alcohols and cyclohexanol, 1,2-diols, and water can serve as nucleophiles to give alkyl or aryl 2-substituted-3-oxobutan-2-yl carbonates, substituted 1,3-dioxolan-2-ones, 3-substituted 3-hydroxybutan-2-ones, respectively with excellent selectivity and high yields. Key words Key wordscarbon dioxide utilization - carbonates - zinc catalysis - multicomponent reaction - synthetic methods Volltext Referenzen References 1a Yang Z.-Z, He L.-N, Gao J, Liu A.-H, Yu B. Energy Environ. Sci. 2012; 5: 6602 1b Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709 1c Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933 1d He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620 1e Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem. Rev. 2015; 115: 12936 1f Song Q.-W, Zhou Z.-H, He L.-N. Green Chem. 2017; 19: 3707 1g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. Green Chem. 2017; 19: 5614 For selected reviews, see: 2a Lu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462 2b Zhang H, Liu H.-B, Yue J.-M. Chem. Rev. 2014; 114: 883 2c Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem. Rev. 2010; 110: 4554 2d Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353 2e Shaikh RR, Pornpraprom S, D’Elia V. ACS Catal. 2018; 8: 419 2f Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Top. Curr. Chem. 2017; 375: 50 For selected examples, see: 3a Lang X.-D, He L.-N. Chem. Rec. 2016; 16: 1337 3b Parker HL, Sherwood J, Hunt AJ, Clark JH. ACS Sustainable Chem. Eng. 2014; 2: 1739 3c Sathish M, Sreeram KJ, Rao JR, Nair BU. ACS Sustainable Chem. Eng. 2016; 4: 1032 3d Sonnati MO, Amigoni S, de Givenchy EP. T, Darmanin T, Choulet O, Guittard F. Green Chem. 2013; 15: 283 4a Shaikh AA. G, Sivaram S. Chem. Rev. 1996; 96: 951 4b Song JL, Zhang BB, Wu TB, Yang GY, Han BX. Green Chem. 2011; 13: 922 4c Huang S, Yan B, Wang S, Ma X. Chem. Soc. Rev. 2015; 44: 3079 5a Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282 5b Sun N, Chen M, Liu Y. J. Org. Chem. 2014; 79: 4055 5c Stainforth NE, Cutting GA, John MP, Willis MC. Tetrahedron: Asymmetry 2009; 20: 741 6 Gennen S, Grignard B, Tassaing T, Jérôme C, Detrembleur C. Angew. Chem. Int. Ed. 2017; 56: 10394 7a Cá ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M. Adv. Synth. Catal. 2011; 353: 133 7b Zhou ZH, Song QW, Xie JN, Ma R, He LN. Chem. Asian J. 2016; 11: 2065 7c Hu JY, Ma J, Lu L, Qian QL, Zhang ZF, Xie C, Han BX. ChemSusChem 2017; 10: 1292 For selected examples of Fe catalysis, see: 8a Peña-López M, Neumann H, Beller M. Eur. J. Org. Chem. 2016; 3721 8b Cuesta-Aluja L, Masdeu-Bultó AM. ChemSelect 2016; 1: 2065 8c Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, Rieger B. Catal. Sci. Technol. 2015; 5: 118 For selected examples of Co catalysis, see: 9a Shen Y.-M, Duan W.-L, Shi M. J. Org. Chem. 2003; 68: 1559 9b Ghosh A, Ramidi P, Pulla S, Sullivan SZ, Collom SL, Gartia Y, Munshi P, Biris AS, Noll BC, Berry BC. Catal. Lett. 2010; 137: 1 9c Paddock RL, Hiyama Y, McKay JM, Nguyen ST. Tetrahedron Lett. 2004; 45: 2023 For selected examples of Ni catalysis, see: 10a Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476 10b Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053 10c Ninokata R, Yamahira T, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2017; 56: 208 For selected examples of Zn catalysis, see: 11a Ma R, He L.-N, Zhou Y.-B. Green Chem. 2016; 18: 226 11b Li F, Xiao L, Xia C, Hu B. Tetrahedron Lett. 2004; 45: 8307 11c Cuesta-Aluja L, Campos-Carrasco A, Castilla J, Reguero M, Masdeu-Bultó AM, Aghmiz A. J. CO2 Util. 2016; 14: 10 11d Mercadé E, Zangrando E, Claver C, Godard C. ChemCatChem 2016; 8: 234 11e Hu JY, Ma J, Zhu QG, Qian QL, Han HL, Mei QQ, Han BX. Green Chem. 2016; 18: 382 11f Liu X, Wang M.-Y, Wang S.-Y, Wang Q, He L.-N. ChemSusChem 2017; 10: 1210 11g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. ChemSusChem 2017; 10: 1501 11h Desens W, Kohrt C, Spannenberga A, Werner T. Org. Chem. Front. 2016; 3: 156 12 Song Q.-W, Chen W.-Q, Ma R, Yu A, Li Q.-Y, Chang Y, He L.-N. ChemSusChem 2015; 8: 821 13 Zhou Z.-H, Song Q.-W, He L.-N. ACS Omega 2017; 2: 337 14 Hoyos P, Sinisterra J.-V, Molinari F, Alcántara AR, de María PD. Acc. Chem. Res. 2010; 43: 288 15 He H, Qi C, Hu X, Guan Y, Jiang H. Green Chem. 2014; 16: 3729 16 Zhao Y, Yang Z, Yu B, Zhang H, Xu H, Hao L, Han B, Liu Z. Chem. Sci. 2015; 6: 2297 Zusatzmaterial Zusatzmaterial Supporting Information