Synthesis 2019; 51(07): 1623-1632
DOI: 10.1055/s-0037-1611344
paper
© Georg Thieme Verlag Stuttgart · New York

1,8,10-Substituted Anthracenes – Hexafunctional Frameworks via Head-to-Tail Photodimerisation

Philipp Niermeier
,
Jan-Hendrik Lamm
,
Jan-Hendrik Peters
,
Beate Neumann
,
Hans-Georg Stammler
,
Norbert W. Mitzel*
Universität Bielefeld, Fakultät für Chemie, Lehrstuhl für Anorganische Chemie und Strukturchemie, Centrum für Molekulare Materialien CM2, Universitätsstraße 25, 33615 Bielefeld, Germany   Email: mitzel@uni-bielefeld.de
› Author Affiliations
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant number MI 477/25-2, project number 248859450.
Further Information

Publication History

Received: 28 September 2018

Accepted after revision: 23 October 2018

Publication Date:
12 December 2018 (online)


Abstract

Several 1,8,10-functionalised anthracene derivatives and a couple of 1,8,9-functionalised anthracene analogous, bearing alkynyl substituents at positions 1 and 8 were synthesised and their photochemistry investigated in UV irradiation experiments. Almost all compounds could be converted into their 9,10:10′,9′-head-to-tail photodimers completely excluding the formation of the corresponding head-to-head isomers. Working under non-inert conditions led to formation of endoperoxides in some cases. Furthermore, a non-classical [4π+2π] photodimer was obtained from 1,8,10-tris[(trimethylsilyl)ethynyl]anthracene with one of the alkynyl substituents involved in the photoreaction. The 1H and 13C NMR spectra of all classical and non-classical photodimers were compared with those of the endoperoxides identifying characteristic shifts for the atoms at positions 9 and 10. Moreover, solid-state structures were determined for one or more of each representative.

Supporting Information

 
  • References

    • 1a Fritzsche J. Bull. Acad. Imper. Sci. St.-Petersbourg 1866; 9: 406
    • 1b Fritzsche J. Z. Chem. 1866; 9: 139
    • 1c Fritzsche J. Bull. Acad. Imper. Sci. St.-Petersbourg 1867; 11: 385
    • 1d Fritzsche J. J. Prakt. Chem. 1867; 101: 333
    • 1e Fritzsche J. Z. Chem. 1867; 10: 289
    • 2a Elbs K. J. Prakt. Chem. 1891; 44: 467
    • 2b Luther R, Weigert F. Z. Phys. Chem. 1905; 51: 297
    • 2c Hengstenberg J, Palacios J. An. Soc. Esp. Fis. Quim. 1932; 5
    • 2d Coulson CA, Orgel LE, Taylor W, Weiss J. J. Chem. Soc. 1955; 2961
    • 2e Ehrenberg M. Acta Crystallogr. 1966; 20: 177
    • 3a Becker H.-D. Chem. Rev. 1993; 93: 145
    • 3b Bouas-Laurent H, Castellan A, Desvergne J.-P, Lapouyade R. Chem. Soc. Rev. 2000; 29: 43
    • 3c Bouas-Laurent H, Castellan A, Desvergne J.-P, Lapouyade R. Chem. Soc. Rev. 2001; 30: 248
  • 4 Lamm J.-H, Glatthor J, Weddeling J.-H, Mix A, Chmiel J, Neumann B, Stammler H.-G, Mitzel NW. Org. Biomol. Chem. 2014; 12: 7355
  • 5 Zhao H, Sen S, Udayabhaskararao T, Sawczyk M, Kučanda K, Manna D, Kundu PK, Lee J.-W, Král P, Klajn R. Nat. Nanotechnol. 2016; 11: 82
    • 6a Chmiel J, Heesemann I, Mix A, Neumann B, Stammler H.-G, Mitzel NW. Eur. J. Org. Chem. 2010; 3897
    • 6b Lamm J.-H, Vishnevskiy YuV, Ziemann E, Neumann B, Stammler H.-G, Mitzel NW. ChemistryOpen 2018; 7: 111

      See, for example:
    • 7a Toyota S, Goichi M, Kotani M, Takezaki M. Bull. Chem. Soc. Jpn. 2005; 78: 2214
    • 7b Toyota S, Kurokawa M, Araki M, Nakamura K, Iwanaga T. Org. Lett. 2007; 9: 3655
    • 7c Tauchert ME, Kaiser TR, Göthlich AP. V, Rominger F, Warth DC. M, Hofmann P. ChemCatChem 2010; 2: 674
    • 7d Tsuya T, Iritani K, Tahara K, Tobe Y, Iwanaga T, Toyota S. Chem. Eur. J. 2015; 21: 1
  • 8 Prinz H, Wiegrebe W, Müller K. J. Org. Chem. 1996; 61: 2853

    • Examples for [4π+2π] photodimers:
    • 9a Becker HD, Andersson K. J. Photochem. 1984; 26: 75
    • 9b Becker H.-D, Andersson K, Sandros K. J. Org. Chem. 1985; 50: 3913
    • 9c Zdobinsky T, Maiti PS, Klajn R. J. Am. Chem. Soc. 2014; 136: 2711
    • 9d Tanabe J, Taura D, Ousaka N, Yashima E. Org. Biomol. Chem. 2016; 14: 10822
    • 9e Lamm J.-H, Niermeier P, Körte LA, Neumann B, Stammler H.-G, Mitzel NW. Synthesis 2018; 50: 2009

      See, for example:
    • 10a Aubry J.-M, Pierlot C, Rigaudy J, Schmidt R. Acc. Chem. Res. 2003; 36: 668
    • 10b Donkers RL, Workentin MS. J. Am. Chem. Soc. 2004; 126: 1688
    • 10c Klaper M, Wessig P, Linker T. Chem. Commun. 2016; 52: 1210
    • 10d Bauch M, Klaper M, Linker T. J. Phys. Org. Chem. 2017; 30: 3607
    • 10e Fudickar W, Linker T. J. Org. Chem. 2017; 82: 9258
  • 11 Cordero B, Gómez V, Platero-Prats AE, Revés M, Echeverría J, Cremades E, Barragán F, Alvarez S. Dalton Trans. 2008; 2832
  • 12 Choi CH, Kertesz M. Chem. Commun. 1997; 2199
  • 13 Fokin AA, Zhuk TS, Blomeyer S, Perez C, Chernish LV, Pashenko AE, Antony J, Vishnevskiy YuV, Berger RJ. F, Grimme S, Logemann C, Schnell M, Mitzel NW, Schreiner PR. J. Am. Chem. Soc. 2017; 139: 1669
    • 14a Otlyotov AA, Lamm J.-H, Blomeyer S, Mitzel NW, Rybkin VV, Zhabanov YA, Tverdova NV, Giricheva NI, Girichev GV. Phys. Chem. Chem. Phys. 2017; 19: 13093
    • 14b Lamm J.-H, Horstmann J, Stammler H.-G, Mitzel NW, Zhabanov YA, Tverdova NV, Otlyotov AA, Giricheva NI, Girichev GV. Org. Biomol. Chem. 2015; 13: 8893

      Examples for solid-state structures of 9,10-epidioxyanthracenes:
    • 15a Brown CJ, Ehrenberg M. Acta Crystallogr., Sect. C 1984; 40: 1059
    • 15b Usman A, Fun H.-K, Li Y, Xu J.-H. Acta Crystallogr., Sect. C 2003; 59: 3089
    • 15c Marsau P, Guinand G, Hinschberger J, Desvergne J.-P, Bouas-Laurent H. Aust. J. Chem. 2004; 57: 1085

      Examples for solid-state structures of tetracene-based endoperoxides:
    • 16a Fumagalli E, Maimondo L, Silvestri L, Moret M, Sassella A, Campione M. Chem. Mater. 2011; 23: 3246
    • 16b Shinashi K, Uchida A. Acta Crystallogr., Sect. C 2012; 68: 995

    • For solid-state structures of pentacene-based endoperoxides:
    • 16c Ono K, Totani H, Hiei T, Yoshino A, Saito K, Eguchi K, Tomura M, Nishida J, Yamashita Y. Tetrahedron 2007; 63: 9699
    • 16d Ono K, Hiei T, Tajika M, Taga K, Saito K, Tomura M, Nishida J, Yamashita Y. Lett. Org. Chem. 2008; 5: 522
  • 17 Katz HE. J. Org. Chem. 1989; 54: 2179
  • 18 Rodríguez-Escrich C, Davis RL, Jiang H, Stiller J, Johansen TK, Jørgensen KA. Chem. Eur. J. 2013; 19: 2932
  • 19 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
  • 20 CCDC 1002160, 1003194, and 1868360–1868372 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.