Subscribe to RSS
DOI: 10.1055/s-0037-1611500
Consecutive Ring-Expansion Reactions for the Iterative Assembly of Medium-Sized Rings and Macrocycles
The authors wish to thank the Leverhulme Trust (for an Early Career Fellowship, ECF-2015-013, for W. P. U.), the University of York (T. C. S. and W. P. U.), and the EPSRC (for a contribution to the DTA studentship for T. C. S., 1792616) for funding.Publication History
Received: 04 March 2019
Accepted after revision: 26 March 2019
Publication Date:
12 April 2019 (online)
Published as part of the Cluster Iterative Synthesis
Abstract
Macrocycles and medium-sized rings have important applications in several scientific fields but can be challenging to make using traditional end-to-end cyclization reactions. Ring-expansion methods represent a useful alternative and offer numerous practical benefits. In this Account, we discuss the current state of the art of ring-expansion strategies that have been applied consecutively. Such methods have the power to expedite the design and synthesis of functionalized macrocycles via the selective, iterative insertion of smaller fragments into ring-enlarged products.
1 Introduction
2 Insertion Reactions
2.1 Transamidation/Transpeptidation
2.2 Transesterification
2.3 Transthioesterification
2.4 Aminyl Radical Cascade
2.5 Iterative Synthesis of Lactones
2.6 Successive Ring Expansion of β-Ketoesters and Lactams
3 Pericyclic Reactions
3.1 Sulfur-Mediated Rearrangements
3.2 Nitrogen-Mediated Rearrangements
4 Fragmentation Reactions
5 Conclusions and Future Outlook
-
References
- 1a Driggers EM. Hale S. P, Lee J, Terrett NK. Nat. Rev. Drug Discov. 2008; 7: 608
- 1b Marsault EPeterson M. L. J. Med. Chem. 2011; 54: 1961
- 1c Ghadiri MR, Granja JR. Acc. Chem. Res. 2013; 46: 2955
- 1d Giordanetto F, Kihlberg J. J. Med. Chem. 2014; 57: 278
- 1e Yudin AK. Chem. Sci. 2015; 6: 30
- 2a Ema T, Tanida D, Sakai T. J. Am. Chem. Soc. 2007; 129: 10591
- 2b Griffiths KE, Stoddart JF. Pure Appl. Chem. 2008; 80: 485
- 2c Evans NH, Beer PD. Chem. Soc. Rev. 2014; 43: 4658
- 2d Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev. 2015; 115: 7398
- 2e Byrne JP. Blasco S, Aletti AB, Hessman G, Gunnlaugsson T. Angew. Chem. Int. Ed. 2016; 55: 8938
- 2f Sato K, Itoh Y, Aida T. J. Am. Chem. Soc. 2011; 133: 13767
- 2g Iyoda M, Yamakawa J, Rahman MJ. Angew. Chem. Int. Ed. 2011; 50: 10522
- 3a Parenty A, Moreau X, Campagne JM. Chem. Rev. 2006; 106: 911
- 3b Hill R, Rai V, Yudin AK. J. Am. Chem. Soc. 2010; 132: 2889
- 3c White CJ, Yudin AK. Nat. Chem. 2011; 3: 509
- 3d Saito F, Bode JW. Nat. Chem. 2016; 8: 1085
- 3e Practical Medicinal Chemistry with Macrocycles. Marsault E, Peterson ML. Wiley; Hoboken, NJ: 2017
- 4a Illuminati G, Mandolini L. Acc. Chem. Res. 1981; 14: 95
- 4b Fastrez J. J. Phys. Chem. 1989; 93: 2635
- 4c Collins JC, James K. Med. Chem. Commun. 2012; 3: 1489
- 5a Mazur S, Jayalekshmy P. J. Am. Chem. Soc. 1979; 101: 677
- 5b Treder AP, Hickey JL, Tremblay M.-CJ, Zaretsky S, Scully CC. G, Mancuso J, Doucet A, Yudin AK, Marsault E. Chem. Eur. J. 2015; 21: 9249
- 5c Rosenbaum C, Waldmann H. Tetrahedron Lett. 2001; 42: 5677
- 5d Bédard A.-C, Collins SK. J. Am. Chem. Soc. 2011; 133: 19976
- 6a Haas K, Ponikwar W, Nöth H, Beck W. Angew. Chem. Int. Ed. 1998; 37: 1086
- 6b Gerbeleu NV, Arion VB, Burgess JP. In Template Synthesis of Macrocyclic Compounds. Wiley-VCH; Weinheim: 1999
- 6c Fu H, Chang H, Shen J, Yu L, Qin B, Zhang K, Zeng H. Chem. Commun. 2014; 50: 3582
- 7 Roesner S, Saunders GJ, Wilkening I, Jayawant E, Geden JV, Kerby P, Dixon AM, Notman R, Shipman M. Chem. Sci. 2019; 10: 2465
- 8 Gartner ZJ, Tse BN, Grubina R, Doyon JB, Snyder TM, Liu DR. Science 2004; 305: 1601
- 9a Ring Enlargement in Organic Chemistry . Hesse M. Wiley-VCH; Weinheim: 1991
- 9b Unsworth WP, Donald JR. Chem. Eur. J. 2017; 23: 8780
- 10a Li Z.-L, Li X.-H, Wang N, Yang N.-Y, Liu X.-Y. Angew. Chem. Int. Ed. 2016; 55: 15100
- 10b Li L, Li Z.-L, Wang F.-L, Guo Z, Cheng YF, Wang N, Dong X.-W, Fang C, Liu J, Hou C, Tan B, Liu X.-Y. Nat. Commun. 2016; 7: 13852
- 10c Mendoza-Sanchez R, Corless VB, Nguyen QN. N, Bergeron-Brlek M, Frost J, Adachi S, Tantillo DJ, Yudin AK. Chem. Eur. J. 2017; 23: 13319
- 10d Loya DR, Jean A, Cormier M, Fressigné C, Nejrotti S, Blanchet J, Maddaluno J, De Paolis M. Chem. Eur. J. 2018; 24: 2080
- 10e Guney T, Wenderski TA, Boudreau MW, Tan DS. Chem. Eur. J. 2018; 24: 13150
- 10f Osipyan A, Sapegin A, Novikov AS, Krasavin M. J. Org. Chem. 2018; 83: 9707
- 10g Massaro NP, Stevens JC, Chatterji A, Sharma I. Org. Lett. 2018; 20: 7585
- 10h Kumar P, Dey R, Banerjee P. Org. Lett. 2018; 20: 5163
- 10i Reutskaya E, Osipyan A, Sapegin A, Novikov AS, Krasavin MJ. Org. Chem. 2019; 84: 1693
- 10j Gao X, Xia M, Yuan C, Zhou L, Sun W, Li C, Wu B, Zhu D, Zhang C, Zheng B, Wang D, Guo H. ACS Catal. 2019; 9: 1645
- 10k Loya DR, De Paolis M. Chem. Eur. J. 2019; 25: 1842
- 11 Lehmann JW, Blair DJ, Burke MD. Nat. Rev. Chem. 2018; For perspective on the importance of iterative synthetic methods, see: 2: 115 ; and references cited therein
- 12a Kricheldorf HR, Lee S.-R, Schittenhelm N. Macromol. Chem. Phys. 1998; 199: 273
- 12b Kudo H, Makino S, Kameyama A, Nishikubo T. Macromolecules 2005; 38: 5964
- 12c Kricheldorf HR. J. Polym. Sci. A Polym. Chem. 2010; 48: 251
- 12d Kudo H, Takeshi Y. J. Polym. Sci. A Polym. Chem. 2014; 52: 857
- 13a Kramer U, Guggisberg A, Hesse M, Schmid H. Angew. Chem., Int. Ed. Engl. 1977; 16: 861
- 13b Kramer U, Schmid H, Guggisberg A, Hesse M. Helv. Chim. Acta 1979; 62: 811
- 14 Kramer U, Guggisberg A, Hesse M, Schmid H. Angew. Chem., Int. Ed. Engl. 1978; 17: 200
- 15 Veith HJ, Hesse M, Schmid H. Helv. Chim. Acta 1970; 53: 1355
- 16 Kimura E, Koike T, Takahashi M. J. Chem. Soc., Chem. Commun. 1985; 385
- 17 Corey EJ, Brunelle DJ, Nicolaou KC. J. Am. Chem. Soc. 1977; 99: 7359
- 18a Tam JP, Lu Y.-A, Yu Q. J. Am. Chem. Soc. 1999; 121: 4316
- 18b Hemu X, Qiu Y, Tam JP. Tetrahedron 2014; 70: 7707
- 19 Pattenden G, Schulz DJ. Tetrahedron Lett. 1993; 34: 6787
- 20 Fouque E, Rousseau G, Seyden-Penne J. J. Org. Chem. 1990; 55: 4807
- 21 Kitsiou C, Hindes JJ, I’Anson P, Jackson P, Wilson TC, Daly EK, Felstead HR, Hearnshaw P, Unsworth WP. Angew. Chem. Int. Ed. 2015; 54: 15794
- 22 Baud LG, Manning MA, Arkless HL, Stephens TC, Unsworth WP. Chem. Eur. J. 2017; 23: 2225
- 23 Stephens TC, Lodi M, Steer AM, Lin Y, Gill MT, Unsworth WP. Chem. Eur. J. 2017; 23: 13314
- 24 Stephens TC, Lawer A, French T, Unsworth WP. Chem. Eur. J. 2018; 24: 13947
- 25 Vedejs E, Reid JG. J. Am. Chem. Soc. 1984; 106: 4617
- 26 Vedejs E, Hagen JP. J. Am. Chem. Soc. 1975; 97: 6878
- 27 Schmid R, Schmid H. Helv. Chim. Acta 1977; 60: 1361
- 28a Vedejs E, Mullins MJ, Renga JM, Singer SP. Tetrahedron Lett. 1978; 19: 519
- 28b Vedejs E. Acc. Chem. Res. 1984; 17: 358
- 29 Weston MH, Nakajima K, Back TG. J. Org. Chem. 2008; 73: 4630
- 30a Lee Y.-S, Jung J.-W, Kim S.-H, Jung J.-K, Paek S.-M, Kim N.-J, Chang D.-J, Lee J, Suh Y.-G. Org. Lett. 2010; 12: 2040
- 30b Suh Y.-G, Kim S.-A, Jung J.-K, Shin D.-Y, Min K.-H, Koo B.-A, Kim H.-S. Angew. Chem. 1999; 111: 3753
- 31 Suh Y.-G, Lee Y.-S, Kim S.-H, Jung J.-K, Yun H, Jang J, Kim N.-J, Jung J.-W. Org. Biomol. Chem. 2012; 10: 561
- 32 Jung J.-W, Kim S.-H, Suh Y.-G. Asian J. Org. Chem. 2017; 6: 1117
- 33 Zhang W, Dowd P. Tetrahedron Lett. 1996; 37: 957
- 34 Fehr C, Galindo J, Etter O, Thommen W. Angew. Chem. Int. Ed. 2002; 41: 4523
- 35 Ikdea M, Ohno K, Takahashi M, Homma K.-I, Uchino T, Tamura Y. Heterocycles 1983; 20: 1005
- 36 Posner GH, Hatcher MA, Maio WA. Org. Lett. 2005; 7: 4301
- 37 Hayashi N, Fujiwara K, Murai A. Tetrahedron Lett. 1996; 37: 6173
- 38 Fujiwara K, Murai A. Bull. Chem. Soc. Jpn. 2004; 77: 2129
For large rings in medicinal chemistry, see:
For large ring molecules in other applications, see:
For useful background and discussion on macrocyclization strategies in general, see:
For pseudo-high-dilution methods (including the use of solid supported systems and phase separation), see:
For an excellent account of classical ring-expansion approaches, see:
For a more recent review, see:
For prominent recent examples of ring-expansion methods, see:
For macrocyclic polymerisaton methods, see:
For selected Hesse works, see ref. 9a and: