Synthesis 2019; 51(13): 2729-2736
DOI: 10.1055/s-0037-1611519
paper
© Georg Thieme Verlag Stuttgart · New York

Gold(III)/Sodium Diphenylphosphinobenzene-3-sulfonate (TPPMS) Catalyzed Dehydrative N-Benzylation of Electron-Deficient Anilines in Water

,
Mika Matsumoto
,
Sayoko Tawara
,
,
Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan   eMail: hidemasa.hikawa@phar.toho-u.ac.jp   eMail: isao.azumaya@phar.toho-u.ac.jp
› Institutsangaben
This work was supported by JSPS KAKENHI Grant Number 16K08179.
Weitere Informationen

Publikationsverlauf

Received: 22. Februar 2019

Accepted after revision: 26. März 2019

Publikationsdatum:
17. April 2019 (online)


Abstract

A strategy for the dehydrative N-benzylation of electron-deficient anilines in water has been developed. The gold(III)/sodium diphenylphosphinobenzene-3-sulfonate (TPPMS) catalyst is highly effective as a Lewis acid for the activation of alcohols and tolerates aerobic conditions. A Hammett study in the reaction of para-substituted benzhydryl alcohols shows negative σ values, indicating a build-up of cationic charge during the rate-determining sp3 C–O bond-cleavage step. The inverse kinetic solvent isotope effect (KSIE = 0.6) is consistent with a specific acid catalysis mechanism. This simple protocol can be performed under mild conditions in an atom-economic process without the need for base or other additives, furnishing the electron-deficient N-benzylic anilines in moderate to excellent yields along with water as a sole coproduct.

Supporting Information

 
  • References

    • 1a Morita N, Miyamoto M, Yoda A, Yamamoto M, Ban S, Hashimoto Y, Tamura O. Tetrahedron Lett. 2016; 57: 4460
    • 1b Borrero NV, DeRatt LG, Barbosa LF, Abboud KA, Aponick A. Org. Lett. 2015; 17: 1754
    • 1c Minkler SR. K, Isley NA, Lippincott DJ, Krause N, Lipshutz BH. Org. Lett. 2014; 16: 724
    • 1d Mukherjee P, Ross AW. Org. Lett. 2011; 13: 1334
    • 1e Ohshima T, Nakahara Y, Ipposhi J, Miyamoto Y, Mashima K. Chem. Commun. 2011; 8322

      For reviews, see:
    • 2a Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 6605
    • 2b Debleds O, Gayon E, Vrancken E, Campagne J.-M. Beilstein J. Org. Chem. 2011; 7: 866
    • 2c Corma A, Leyva-Perez A, Maria JS. Chem. Rev. 2011; 111: 1657
    • 2d Arcadi A. Chem. Rev. 2008; 108: 3266
  • 3 Georgy M, Boucard M, Campagne J.-M. J. Am. Chem. Soc. 2005; 127: 14180
  • 4 Terrasson V, Marque S, Georgy M, Campagne J.-M, Prim D. Adv. Synth. Catal. 2006; 348: 2063
    • 5a Morita N, Tsunokake T, Narikiyo Y, Harada M, Tachibana T, Saito Y, Ban S, Hashimoto Y, Okamoto I, Tamura O. Tetrahedron Lett. 2015; 56: 6269
    • 5b Morita N, Yasuda A, Shibata M, Ban S, Hashimoto Y, Okamoto I, Tamura O. Org. Lett. 2015; 17: 2668
    • 5c Huang R, Yang Y, Wang D.-S, Zhang L, Wang D. Org. Chem. Front. 2018; 5: 203

      For solvent-free conditions, see:
    • 6a Xu Q, Xie H, Zhang E.-L, Ma X, Chen J, Yu X.-C, Li H. Green Chem. 2016; 18: 3940
    • 6b Li L, Zhu A, Zhang Y, Fan X, Zhang G. RSC Adv. 2014; 4: 4286
    • 6c Yu J.-J, Wang L.-M, Guo F.-L, Liu J.-Q, Liu Y, Jiao N. Synth. Commun. 2011; 41: 1609

      For ionic liquid as a reaction medium, see:
    • 7a Han F, Yang L, Li Z, Xia C. Adv. Synth. Catal. 2012; 354: 1052
    • 7b Zhu A, Li L, Wang J, Zhuo K. Green Chem. 2011; 13: 1244
    • 7c Qureshi ZS, Deshmukh KM, Tambade PJ, Dhake KP, Bhanage BM. Eur. J. Org. Chem. 2010; 6233
    • 8a Xu Z, Yu X, Sang X, Wang D. Green Chem. 2018; 20: 2571
    • 8b Ge C, Sang X, Yao W, Zhang L, Wang D. Green Chem. 2018; 20: 1805
    • 8c Hikawa H, Imamura H, Kikkawa S, Azumaya I. Green Chem. 2018; 20: 3044
    • 8d Hikawa H, Ichinose R, Kikkawa S, Azumaya I. Green Chem. 2018; 20: 1297
    • 8e Morioka Y, Matsuoka A, Binder K, Knappett BR, Wheatley AE. H, Naka H. Catal. Sci. Technol. 2016; 6: 5801
    • 8f Sawama Y, Kawajiri T, Niikawa M, Goto R, Yabe Y, Takahashi T, Marumoto T, Itoh M, Kimura Y, Monguchi Y, Kondo S, Sajiki H. ChemSusChem 2015; 8: 3773

      For reviews, see:
    • 9a Kitanosono T, Masuda K, Xu P, Kobayashi S. Chem. Rev. 2018; 118: 679
    • 9b Ortiz R, Herrera RP. Molecules 2017; 22: 574
    • 10a Hikawa H, Kotaki F, Kikkawa S, Azumaya I. J. Org. Chem. 2019; 84: 1972
    • 10b Hikawa H, Tada A, Kikkawa S, Azumaya I. Adv. Synth. Catal. 2016; 358: 395
    • 10c Hikawa H, Suzuki H, Yokoyama Y, Azumaya I. J. Org. Chem. 2013; 78: 6714

      For copper-catalyzed dehydrative coupling reactions, see:
    • 11a Xu Z, Wang D.-S, Yu X, Yang Y, Wang D. Adv. Synth. Catal. 2017; 359: 3332
    • 11b Hikawa H, Mori Y, Kikkawa S, Azumaya I. Adv. Synth. Catal. 2016; 358: 765
    • 11c Wei X.-F, Shi S, Xie X.-W, Shimizu Y, Kanai M. ACS Catal. 2016; 6: 6718
    • 11d Shcherbinin VA, Shpuntov PM, Konshin VV, Butin AV. Tetrahedron Lett. 2016; 57: 1473
    • 11e Babu SA, Yasuda M, Tsukahara Y, Yamauchi T, Wada Y, Baba A. Synthesis 2008; 1717

      For cobalt-catalyzed dehydrative coupling reactions, see:
    • 12a Sen M, Dahiya P, Premkumar JR, Sundararaju B. Org. Lett. 2017; 19: 3699
    • 12b Hikawa H, Ijichi Y, Kikkawa S, Azumaya I. Eur. J. Org. Chem. 2017; 465
    • 12c Bunno Y, Murakami N, Suzuki Y, Kanai M, Yoshino T, Matsunaga S. Org. Lett. 2016; 18: 2216
    • 12d Lu Q, Vasquez-Cespedes S, Gensch T, Glorius F. ACS Catal. 2016; 6: 2352
    • 12e Sen M, Kalsi D, Sundararaju B. Chem. Eur. J. 2015; 21: 15529
    • 12f Suzuki Y, Sun B, Sakata K, Yoshino T, Matsunaga S, Kanai M. Angew. Chem. Int. Ed. 2015; 54: 9944
    • 13a Kadina A, Kietrys AM, Kool ET. Angew. Chem. Int. Ed. 2018; 57: 3059
    • 13b Komatsuda M, Muto K, Yamaguchi J. Org. Lett. 2018; 20: 4354
    • 13c Yu H, Gao B, Hu B, Huang H. Org. Lett. 2017; 19: 3520
    • 13d Elie BT, Levine C, Ubarretxena-Belandia I, Varela-Ramirez A, Aguilera RJ, Ovalle R, Contel M. Eur. J. Inorg. Chem. 2009; 3421
  • 14 Nallagonda R, Rehan M, Ghorai P. J. Org. Chem. 2014; 79: 2934
    • 15a Ye D, Huang R, Zhu H, Zou L.-H, Wang D. Org. Chem. Front. 2019; 6: 62
    • 15b Yu X, Wang D.-S, Xu Z, Yang B, Wang D. Org. Chem. Front. 2017; 4: 1011
    • 16a Calvo P, Crugeiras J, Rios A, Rios MA. J. Org. Chem. 2007; 72: 3171
    • 16b Junttila MH, Hormi OE. O. J. Org. Chem. 2007; 72: 2956
    • 16c Horenstein BA, Bruner M. J. Am. Chem. Soc. 1998; 120: 1357
    • 16d Humeres E, Debacher NA, de S Sierra MM, Franco JD, Schutz A. J. Org. Chem. 1998; 63: 1598
    • 16e Fife TH, Bembi R, Natarajan R. J. Am. Chem. Soc. 1996; 118: 12956
    • 17a Goto K, Yano Y, Okada E, Liu C.-W, Yamamoto K, Ueoka R. J. Org. Chem. 2003; 68: 865
    • 17b Humeres E, Lee BS, Debacher NA. J. Org. Chem. 2008; 73: 7189
    • 17c Junttila MH, Hormi OE. O. J. Org. Chem. 2007; 72: 2956
    • 17d Freccero M, Gandolfi R. J. Org. Chem. 2005; 70: 7098
  • 18 Soper AK, Benmore CJ. Phys. Rev. Lett. 2008; 101: 065502
  • 19 Harada Y, Tokushima T, Horikawa Y, Takahashi O, Niwa H, Kobayashi M, Oshima M, Senba Y, Ohashi H, Wikfeldt KT, Nilsson A, Pettersson LG. M, Shin S. Phys. Rev. Lett. 2013; 111: 193001
  • 20 Li W, Zheng X, Li Z. Adv. Synth. Catal. 2013; 355: 181
  • 21 Zhang C, Zhan Z, Lei M, Hu L. Tetrahedron 2014; 70: 8817
  • 22 Yu A, Wu Y, Cheng B, Wei K, Li J. Adv. Synth. Catal. 2009; 351: 767
  • 23 Strekowski L, Cegla MT, Harden DB, Kong SB. J. Org. Chem. 1989; 54: 2464
  • 24 Aziz J, Brion J.-D, Hamze A, Alami M. Adv. Synth. Catal. 2013; 355: 2417
  • 25 van As DJ, Connell TU, Brzozowski M, Scully AD, Polyzos A. Org. Lett. 2018; 20: 905