Synthesis 2019; 51(13): 2678-2686
DOI: 10.1055/s-0037-1611534
special topic
© Georg Thieme Verlag Stuttgart · New York

Sterically Hindered Amination of Aryl Chlorides Catalyzed by a New Carbazolyl-Derived P,N-Ligand-Composed Palladium Complex

Wing In Lai
,
Man Pan Leung
,
Pui Ying Choy
,
Fuk Yee Kwong*
Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong   eMail: fykwong@cuhk.edu.hk
› Institutsangaben
We thank the Research Grants Council of Hong Kong, General Research Fund (GRF 15303415/15P) and The Chinese University of Hong Kong (CUHK) Direct Grant (4442122) for financial support.
Weitere Informationen

Publikationsverlauf

Received: 11. März 2019

Accepted after revision: 12. April 2019

Publikationsdatum:
06. Mai 2019 (online)


These authors contributed equally to this work.

Published as part of the Special Topic Amination Reactions in Organic Synthesis

Abstract

A family of 2-(9H-carbazol-9-yl)phenyl-based phosphine ligands were synthesized and their efficacy in promoting the steric hindered Buchwald–Hartwig amination was evaluated. In the presence of Pd(OAc)2 (0.03–1.0 mol%) associated with the newly developed a carbazolyl-derived phosphine ligand, the synthesis of tetra-ortho-substituted diarylamines proceeded smoothly with excellent product yields (up to 99%). A remarkable result was obtained even for the coupling of highly sterically congested 2,6-diisopropylaniline and hindered 2-chloro-1,3,5-triisopropylbenzene (96% isolated yield). A possible decomposition pathway for the anthracenyl C–N coupling product is also reported.

Supporting Information

 
  • Reference

    • 1a Lawrence SA. Amines: Synthesis, Properties and Applications. Cambridge University Press; Cambridge: 2004
    • 1b Travis AS. Manufacture and Uses of the Anilines: A Vast Array of Processes and Products. In The Chemistry of Anilines. Rappoport Z. John Wiley & Sons; New York: 2007: 715
    • 2a Tani Y, Seki M, Kinoshita Y, Gouda K. Patent US2017247557A, 2017
    • 2b Mu Y, Zhang Y, Yao W. Patent CN102391294B, 2015
  • 3 Burnett JF, Zahler RE. Chem. Rev. 1951; 49: 237
  • 4 Heaney H. Chem. Rev. 1962; 62: 81
  • 5 Smith MB, March J. Advanced Organic Chemistry: Reaction, Mechanism, and Structure, 5th ed. Wiley-Interscience; New York: 2001

    • For a recent review described the reductive amination, see:
    • 6a Alinezhad H, Yavari H, Salehian F. Curr. Org. Chem. 2015; 19: 1021
    • 6b Raoufmoghaddam S. Org. Biomol. Chem. 2014; 12: 7179

    • For a selected example, see:
    • 6c Abdel-Magid AF, Carson KG, Harris BD, Maryanoff CA, Shah RD. J. Org. Chem. 1996; 61: 3849
    • 7a Schlummer B, Scholz U. Adv. Synth. Catal. 2004; 346: 1599
    • 7b Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 7c Scholz U. Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008: 333-375
    • 7d Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 7e Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 7f Wong SM, So CM, Kwong FY. Synlett 2012; 23: 1132
    • 7g Wong SM, Yuen OY, Choy PY, Kwong FY. Coord. Chem. Rev. 2015; 293–294: 158
    • 7h Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 7i So CM, Kwong FY. Chem. Soc. Rev. 2011; 40: 4963
  • 8 Hartwig JF, Richards S, Barañano D, Paul F. J. Am. Chem. Soc. 1996; 118: 3626
    • 9a Marion N, Ecarnot EC, Navarro O, Amoroso D, Bell A, Nolan SP. J. Org. Chem. 2006; 71: 3816
    • 9b Marion N, Navarro O, Mei J, Stevens ED, Scott NM, Nolan SP. J. Am. Chem. Soc. 2006; 128: 4101
    • 9c Marion N, de Frémont P, Puijk IM, Ecarnot EC, Amoroso D, Bell A, Nolan SP. Adv. Synth. Catal. 2007; 349: 2380
    • 9d Chartoire A, Frogneux X, Nolan SP. Adv. Synth. Catal. 2012; 354: 1897
    • 9e Meiries S, Chartoire A, Slawin AM. Z, Nolan SP. Organometallics 2012; 31: 3402
    • 9f Chartoire A, Frogneux X, Boreux A, Slawin AM. Z, Nolan SP. Organometallics 2012; 31: 6947
    • 9g Chartorie A, Boreux A, Martin AR, Nolan SP. RSC Adv. 2013; 3: 3840
    • 9h Meiries S, Le Duc G, Chartoire A, Collado A, Speck K, Arachchige KS. A, Slawin AM. Z, Nolan SP. Chem. Eur. J. 2013; 19: 17358
    • 9i Meiries S, Speck K, Cordes DB, Slawin AM. Z, Nolan SP. Organometallics 2013; 32: 330
    • 9j Le Duc G, Meiries S, Nolan SP. Organometallics 2013; 32: 7547
    • 9k Bastug G, Nolan SP. Organometallics 2014; 33: 1253
    • 9l Marelli E, Chartoire A, Le Duc G, Nolan SP. ChemCatChem 2015; 7: 4021

      For related references, see:
    • 10a Sadighi JP, Harris MC, Buchwald SL. Tetrahedron Lett. 1998; 39: 5327
    • 10b Gooßen LJ, Paetzold J, Briel O, Rivas-Nass A, Karch R, Kayser B. Synlett 2005; 275
    • 10c Li J, Cui M, Yu A, Wu Y. J. Organomet. Chem. 2007; 692: 3732
    • 10d Organ MG, Abdel-Hade M, Avola S, Dubovyk I, Hadei N, Kantchev EA. B, O’Brien CJ, Sayah M, Valente C. Chem. Eur. J. 2008; 14: 2443
    • 10e Xu C, Wang Z.-Q, Fu W.-J, Lou X.-H, Li Y.-F, Cen F.-F, Ma H.-J, Ji B.-M. Organometallics 2009; 28: 1909
    • 10f Schoeps D, Sashuk V, Ebert K, Plenio H. Organometallics 2009; 28: 3922
    • 10g Winkelmann OH, Riekstins A, Nolan SP, Navarro O. Organometallics 2009; 28: 5809
    • 10h Tu T, Fang W, Jiang J. Chem. Commun. 2011; 47: 12358
    • 10i Lee D.-H, Taher A, Hossain S, Jin M.-J. Org. Lett. 2011; 13: 5540
    • 10j Chen M.-T, Vicic DA, Turner ML, Navarro O. Organometallics 2011; 30: 5052
    • 10k Zhu L, Ye Y.-M, Shao L.-X. Tetrahedron 2012; 68: 2414
    • 10l Hoi KH, Çalimsiz S, Froese RD. J, Hopkinson AC, Organ MG. Chem. Eur. J. 2012; 18: 145
    • 10m Li Y.-J, Zhang J.-L, Li X.-J, Geng Y, Xu X.-H, Jin Z. J. Organomet. Chem. 2013; 737: 12
    • 10n Fang W, Jiang J, Xu Y, Zhou J, Tu T. Tetrahedron 2013; 69: 673
    • 10o Zhang Y, César V, Storch G, Lugan N, Lavigne G. Angew. Chem. Int. Ed. 2014; 53: 6482
    • 10p Krinsky JL, Martínez A, Godard C, Castillón S, Claver C. Adv. Synth. Catal. 2014; 356: 460
    • 10q Liu F, Zhu Y.-R, Song L.-G, Lu J.-M. Org. Biomol. Chem. 2016; 14: 2563
    • 10r Zhao X.-Y, Zhou Q, Lu J.-M. RSC Adv. 2016; 6: 24484
    • 10s Zhang Y, Lavigne G, Lugan N, César V. Chem.–Eur. J. 2017; 23: 13792
    • 10t Rühling A, Rakers L, Glorius F. ChemCatChem 2017; 9: 547
    • 10u Lan X.-B, Li Y, Li Y.-F, Shen D.-S, Ke Z, Liu F.-S. J. Org. Chem. 2017; 82: 2914
    • 10v Khadra A, Mayer S, Mitchell D, Rodriguez MJ, Organ MG. Organometallics 2017; 36: 3573
    • 10w Huang F.-D, Xu C, Lu D.-D, Shen D.-S, Li T, Liu F.-S. J. Org. Chem. 2018; 83: 9144
    • 10x Liu F, Hu Y.-Y, Li D, Zhou Q, Lu J.-M. Tetrahedron 2018; 74: 5683
    • 10y Tian X, Lin J, Zou S, Lv J, Huang Q, Zhu J, Huang S, Wang Q. J. Organomet. Chem. 2018; 861: 125
    • 11a Ehrentraut A, Zapf A, Beller M. J. Mol. Catal. A: Chem. 2002; 182–183: 515
    • 11b Urgaonkar S, Nagarajan M, Verkade JG. J. Org. Chem. 2003; 68: 452
    • 11c Urgaonkar S, Xu J.-H, Verkade JG. J. Org. Chem. 2003; 68: 8416
    • 11d Urgaonkar S, Verkade JG. J. Org. Chem. 2004; 69: 9135
    • 11e Ackermann L, Spatz JH, Gschrei CJ, Born R, Althammer A. Angew. Chem. Int. Ed. 2006; 45: 7627
    • 11f Hill L, Moore LR, Huang R, Craciun R, Vincent AJ, Dixon DA, Chou J, Woltermann CJ, Shaughnessy KH. J. Org. Chem. 2006; 71: 5117
    • 11g Rodriguez S, Qu B, Haddad N, Reeves DC, Tang W, Lee H, Krishnamurthy D, Senanayake CH. Adv. Synth. Catal. 2011; 353: 533
    • 11h Chartoire A, Lesieur M, Slawin AM. Z, Nolan SP, Cazin CS. J. Organometallics 2011; 30: 4432
    • 11i Raders SM, Moore JN, Parks JK, Miller AD, Leißing TM, Kelley SP, Rogers RD, Shaughnessy KH. J. Org. Chem. 2013; 78: 4649
    • 11j Iwai T, Harada T, Hara K, Sawamura M. Angew. Chem. Int. Ed. 2013; 52: 12322
    • 11k Liu T.-P, Cheng Q, Song W.-J, Cai L.-Z, Tao X.-C. Synlett 2012; 23: 2333
    • 11l Reddy CV, Kingston JV, Verkade JG. J. Org. Chem. 2008; 73: 3047
  • 12 Ruiz-Castillo P, Blackmond DG, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 3085
  • 13 Hu H, Qu F, Gerlach DL, Shaughnessy KH. ACS Catal. 2017; 7: 2516

    • For selected references, see:
    • 14a So CM, Lau CP, Kwong FY. Org. Lett. 2007; 9: 2795
    • 14b So CM, Lee HW, Lau CP, Kwong FY. Org. Lett. 2009; 11: 317
    • 14c Choy PY, Chow WK, So CM, Lau CP, Kwong FY. Chem. Eur. J. 2010; 16: 9982
    • 14d Chow WK, So CM, Lau CP, Kwong FY. Chem. Eur. J. 2011; 17: 6913
    • 14e Choy PY, Luk KC, Wu Y, So CM, Wang L.-L, Kwong FY. J. Org. Chem. 2015; 80: 1457
    • 14f Lee HW, Lam FL, So CM, Lau CP, Chan AS. C, Kwong FY. Angew. Chem. Int. Ed. 2009; 48: 7436
    • 14g Kwong FY, Lai CW, Chan KS. J. Am. Chem. Soc. 2001; 123: 8864
    • 14h Lee HW, Chan AS. C, Kwong FY. Chem. Commun. 2007; 2633
    • 15a Chen G, Lam WH, Fok WS, Lee HW, Kwong FY. Chem. Asian J. 2007; 2: 306
    • 15b So CM, Zhou Z, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2008; 47: 6402
    • 15c Chung KH, So CM, Wong SM, Luk CH, Zhou Z, Lau CP, Kwong FY. Synlett 2012; 23: 1181
    • 15d Yang Q, Choy PY, Fu WC, Fan B, Kwong FY. J. Org. Chem. 2015; 80: 11193
    • 15e Choy PY, Chung KH, Yang Q, So CM, Sun RW. Y, Kwong FY. Chem. Asian J. 2018; 13: 2465
    • 15f Yeung PY, Tsang CP, Kwong FY. Tetrahedron Lett. 2011; 52: 7038
    • 15g Yeung PY, Chung KH, Kwong FY. Org. Lett. 2011; 13: 2912
  • 17 The Pd-catalyzed coupling of 2,6-diisopropylaniline and 1-chloro-2,6-diisopropylbenzene to afford tetra-ortho-substituted diarylamine was previously reported by Shao (1.0 mol% Pd-NHC, 84%);10k Sawamura (1.5 mol% Pd, 80%);11j Jin and Xu (2 mol% Pd-NHC, 54%).10m
  • 18 Armarego WL. F. Purification of Laboratory Chemicals, 8th ed. Butterworth-Heinemann; Oxford: 2017
  • 19 Johansson Seechurn CC. C, Sperger T, Scrase TG, Schoenebeck F, Colacot TJ. J. Am. Chem. Soc. 2017; 139: 5194
  • 20 Xin HY, Biehl ER. J. Org. Chem. 1983; 48: 4397
  • 21 Cran JW, Vdhani DV, Krafft ME. Synlett 2014; 25: 1550