Subscribe to RSS
DOI: 10.1055/s-0037-1611647
Gold Vinylidenes as Useful Intermediates in Synthetic Organic Chemistry
Publication History
Received: 02 December 2018
Accepted: 05 December 2018
Publication Date:
10 January 2019 (online)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
Gold vinylidenes have recently emerged as useful intermediates in synthetic organic chemistry. These species, which can principally be accessed by a 1,2-migration process from a gold-activated alkyne or by dual gold catalysis on a diyne substrate, can react with nucleophilic partners or by C–H insertion to produce a variety of functionalized (poly)cyclic compounds. This short review covers the synthetic approaches developed so far to access gold vinylidenes and the different reactivities these species can exhibit.
1 Introduction
2 1,2-Migration Processes
3 Dual Gold Catalysis
4 Other Processes
5 Conclusion
-
References
- 1a Hashmi AS. K, Hutchings GJ. Angew. Chem. Int. Ed. 2006; 45: 7896
- 1b Hashmi AS. K. Chem. Rev. 2007; 107: 3180
- 1c Fürstner A, Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
- 1d Jiménez-Núñez E, Echavarren AM. Chem. Commun. 2007; 333
- 1e Li Z, Brouwer C, He C. Chem. Rev. 2008; 108: 3239
- 1f Arcadi A. Chem. Rev. 2008; 108: 3266
- 1g Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
- 1h Patil NT, Yamamoto Y. Chem. Rev. 2008; 108: 3395
- 1i Dorel R, Echavarren AM. Chem. Rev. 2015; 115: 9028
- 1j Qian D, Zhang J. Chem. Soc. Rev. 2015; 44: 677
- 1k Joost M, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2015; 54: 15022
- 1l Pflästerer D, Hashmi AS. K. Chem. Soc. Rev. 2016; 45: 1331
- 1m Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448
- 1n Day DP, Chan PW. H. Adv. Synth. Catal. 2016; 358: 1368
- 2 For a review on gold carbenes and other cationic intermediates relevant to gold catalysis, see: Harris RJ, Widenhoefer RA. Chem. Soc. Rev. 2016; 45: 4533
- 3 Hashmi AS. K. In Molecular Catalysts: Structure and Functional Design . Gade LH, Hofmann P. Wiley-VCH; Weinheim: 2014: 89
- 4 Mamane V, Hannen P, Fürstner A. Chem. Eur. J. 2004; 10: 4556
- 5 Soriano E, Marco-Contelles J. Organometallics 2006; 25: 4542
- 6 Morán-Poladura P, Suárez-Pantiga S, Piedrafita M, Rubio E, González JM. J. Organomet. Chem. 2011; 696: 12
- 7 Nunes dos Santos Comprido L, Klein JE. M. N, Knizia G, Kästner J, Hashmi AS. K. Chem. Eur. J. 2016; 22: 2892
- 8 Morán-Poladura P, Rubio E, González JM. Beilstein J. Org. Chem. 2013; 9: 2120
- 9 Morán-Poladura P, Rubio E, González JM. Angew. Chem. Int. Ed. 2015; 54: 3052
- 10 Nösel P, Müller V, Mader S, Moghimi S, Rudolph M, Braun I, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2015; 357: 500
- 11 Seregin IV, Gevorgyan V. J. Am. Chem. Soc. 2006; 128: 12050
- 12 Xia Y, Dudnik AS, Li Y, Gevorgyan V. Org. Lett. 2010; 12: 5538
- 13 McGee P, Bellavance G, Korobkov I, Tarasewicz A, Barriault L. Chem. Eur. J. 2015; 21: 9662
- 14 Bellavance G, Barriault L. Angew. Chem. Int. Ed. 2014; 53: 6701
- 15 Hashmi AS. K, Braun I, Rudolph M, Rominger F. Organometallics 2012; 31: 644
- 16a Hashmi AS. K. Acc. Chem. Res. 2014; 47: 864
- 16b Braun I, Mohamed Asiri A, Hashmi AS. K. ACS Catal. 2013; 3: 1902
- 16c Gómez-Suárez A, Nolan SP. Angew. Chem. Int. Ed. 2012; 51: 8156
- 16d Cheong PH.-Y, Morganelli P, Luzung MR, Houk KN, Toste FD. J. Am. Chem. Soc. 2008; 130: 4517
- 16e Odabachian Y, Le Goff XF, Gagosz F. Chem. Eur. J. 2009; 15: 8966
- 17 For a study by the same group on aryl cation generation under gold catalysis, see: Wurm T, Bucher J, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2017; 359: 1637
- 18 For a mass spectrometry study aimed at detecting intermediates in this transformation, see: Greisch J.-F, Weis P, Brendle K, Kappes MM, Haler JR. N, Far J, De Pauw E, Albers C, Bay S, Wurm T, Rudolph M, Schulmeister J, Hashmi AS. K. Organometallics 2018; 37: 1493
- 19 Hashmi AS. K, Wieteck M, Braun I, Nösel P, Jongbloed L, Rudolph M, Rominger F. Adv. Synth. Catal. 2012; 354: 555
- 20a Højer Vilhelmsen M, Hashmi AS. K. Chem. Eur. J. 2014; 20: 1901
- 20b Højer Larsen M, Houk KN, Hashmi AS. K. J. Am. Chem. Soc. 2015; 137: 10668
- 20c Villegas-Escobar N, Højer Larsen M, Gutiérrez-Oliva S, Hashmi AS. K, Toro-Labbé A. Chem. Eur. J. 2017; 23: 13360
- 21 Hashmi AS. K, Lauterbach T, Nösel P, Højer Vilhelmsen M, Rudolph M, Rominger F. Chem. Eur. J. 2013; 19: 1058
- 22 Bucher J, Wurm T, Taschinski S, Sachs E, Ascough D, Rudolph M, Rominger F, Hashmi AS. K. Adv. Synth. Catal. 2017; 359: 225
- 23 Ye L, Wang Y, Aue DH, Zhang L. J. Am. Chem. Soc. 2012; 134: 31
- 24 Hashmi AS. K, Braun I, Nösel P, Schädlich J, Wieteck M, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2012; 51: 4456
- 25 Klein JE. M. N, Knizia G, Nunes dos Santos Comprido L, Kästner J, Hashmi AS. K. Chem. Eur. J. 2017; 23: 16097
- 26 Nösel P, Lauterbach T, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2013; 19: 8634
- 27 Hashmi AS. K, Wieteck M, Braun I, Rudolph M, Rominger F. Angew. Chem. Int. Ed. 2012; 51: 10633
- 28 Wang Y, Yepremyan A, Ghorai S, Todd R, Aue DH, Zhang L. Angew. Chem. Int. Ed. 2013; 52: 7795
- 29a Hansmann MM, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 2593
- 29b Tšupova S, Hansmann MM, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2016; 22: 16286
- 29c Tšupova S, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2017; 23: 12259
- 30 Hansmann MM, Tšupova S, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2014; 20: 2215
- 31 Vachhani DD, Galli M, Jacobs J, Van Meervelt L, Van der Eycken EV. Chem. Commun. 2013; 49: 7171
- 32 Wieteck M, Tokimizu Y, Rudolph M, Rominger F, Ohno H, Fujii N, Hashmi AS. K. Chem. Eur. J. 2014; 20: 16331
- 33 Plajer AJ, Ahrens L, Wieteck M, Lustosa DM, Babaahmadi R, Yates B, Ariafard A, Rudolph M, Rominger F, Hashmi AS. K. Chem. Eur. J. 2018; 24: 10766
- 34 Tšupova S, Cadu A, Stuck F, Rominger F, Rudolph M, Samec JS. M, Hashmi AS. K. ChemCatChem 2017; 9: 1915
- 35 Tokimizu Y, Wieteck M, Rudolph M, Oishi S, Fujii N, Hashmi AS. K, Ohno H. Org. Lett. 2015; 17: 604
- 36 Zhao Q, León Rayo DF, Campeau D, Daenen M, Gagosz F. Angew. Chem. Int. Ed. 2018; 57: 13603
- 37 Wang H.-F., Wang S.-Y., Qin T.-Z., Zi W.; Chem. Eur. J.; 2018, 24: in press; DOI 10.1002/chem.201804529
- 38 Hyland C., Zamani F., Babaahmadi R., Gardiner M. G., Ariafard A., Pyne S. G., Yates B.; Angew. Chem. Int. Ed.; 2018, 57: in press; DOI 10.1002/anie.201810794
- 39a Bucher J, Stößer T, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 1666
- 39b Raubenheimer HG. ChemCatChem 2015; 7: 1261
- 40 Yu C, Chen B, Zhou T, Tian Q, Zhang G. Angew. Chem. Int. Ed. 2015; 54: 10903
- 41 Yu C, Ma X, Chen B, Tang B, Paton RS, Zhang G. Eur. J. Org. Chem. 2017; 1561
- 42 Wang Y, Zarca M, Gong L.-Z, Zhang L. J. Am. Chem. Soc. 2016; 138: 7516
- 43a Kim N, Widenhoefer RA. Angew. Chem. Int. Ed. 2018; 57: 4722
- 43b Hansmann MM, Rominger F, Hashmi AS. K. Chem. Sci. 2013; 4: 1552
- 43c Xiao X.-S, Kwong W.-L, Guan X, Yang C, Lu W, Che C.-M. Chem. Eur. J. 2013; 19: 9457
- 43d Jin L, Melaimi M, Kostenko A, Karni M, Apeloig Y, Moore CE, Rheingold AL, Bertrand G. Chem. Sci. 2016; 7: 150
- 44 Bucher J, Wurm T, Swamy Nalivela K, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2014; 53: 3854
- 45 Debrouwer W, Fürstner A. Chem. Eur. J. 2017; 23: 4271
- 46 For another study on the synthesis and characterization of a gold vinylidene complex, see: Harris RJ, Widenhoefer RA. Angew. Chem. Int. Ed. 2015; 54: 6867
- 47 Jaroschik F, Simonneau A, Lemière G, Cariou K, Agenet N, Amouri H, Aubert C, Goddard J.-P, Lesage D, Malacria M, Gimbert Y, Gandon V, Fensterbank L. ACS Catal. 2016; 6: 5146
For selected reviews on homogeneous gold catalysis, see:
For a study on the parameters affecting the stability of vinylidene gold species, see:
For reviews and highlight on dual gold catalysis, see:
For seminal examples of dual gold-catalyzed processes, see:
For gold allenylidene species, see: