CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1263-1272
DOI: 10.1055/s-0037-1611655
paper
Copyright with the author

Organocatalytic Desymmetrisation of Fittig’s Lactones: Deuterium as a Reporter Tag for Hidden Racemisation

Péter Spránitz
,
Petra Sőregi
,
Bence Béla Botlik
,
Máté Berta
,
Institute of Organic Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2A, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
› Author Affiliations
We are grateful for the financial support from NKFIH (K116150).
Further Information

Publication History

Received: 12 December 2018

Accepted: 17 December 2018

Publication Date:
24 January 2019 (online)


Published as part of the 50 Years SYNTHESISGolden Anniversary Issue

Abstract

Highly enantioselective desymmetrisation of Fittig’s lactones with alcohols is promoted by bifunctional cinchona squaramides. The reactions were carried out with monodeuterated methanol to detect possible hidden racemisation of the stereogenic centre. Current evidence suggests that racemisation was not a relevant process for most substrates; partial erosion of enantioselectivity was only detected with ortho-substituted aryl derivates. The resultant glutaric acid derivatives possess a scaffold that is common in natural products and the compounds are also useful chiral building blocks for further synthetic endeavours.

 
  • References

    • 1a Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
    • 1b Suzuki T. Tetrahedron Lett. 2017; 58: 4731
    • 2a For a recent review, see: Merad J, Candy M, Pons J.-M, Bressy C. Synthesis 2017; 49: 1938

    • Selected examples:
    • 2b Phillips EM, Roberts JM, Scheidt KA. Org. Lett. 2010; 12: 2830
    • 2c Higuchi K, Suzuki S, Ueda R, Oshima N, Kobayashi E, Tayu M, Kawasaki T. Org. Lett. 2015; 17: 154
    • 2d Park KH, Chen DY.-K. Chem. Commun. 2018; 13018
    • 2e Park J, Chen DY.-K. Angew. Chem. Int. Ed. 2018; 57: 16152
    • 3a Chen Y, McDaid P, Deng L. Chem. Rev. 2003; 103: 2965
    • 3b de Villegas MD, Gálvez JA, Etayo P, Badorrey R, López-Ram-de-Víu P. Chem. Soc. Rev. 2011; 40: 5564
  • 4 Gualtierotti J.-B, Pasche D, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2014; 53: 9926
    • 5a Shim SH, Gloer JB, Wicklow DT. J. Nat. Prod. 2006; 69: 1601
    • 5b Chen X.-L, Liu H.-L, Li J, Xin G.-R, Guo Y.-W. Org. Lett. 2011; 13: 5032
    • 5c Weinaes K, Bahr W. Justus Liebigs Ann. Chem. 1969; 724: 214
    • 6a Biber A, Koch E. Planta Med. 1999; 65: 192
    • 6b Rossi R, Basilico F, Rossoni G, Riva A, Morazzoni P, Mauri PL. J. Pharm. Biomed. Anal. 2009; 50: 224
    • 6c Woelkart K, Feizlmayr E, Dittrich P, Beubler E, Pinl F, Suter A, Bauer R. Phytother. Res. 2010; 24: 445
    • 7a Acylals are cleaved by esterases and used in drug design: Gisch N, Balzarini J, Meier C. J. Med. Chem. 2007; 50: 1658
    • 7b For a review on aldehyde acylals, see: Sydnes LK, Sandberg M. Proc. Indian Natn. Sci. Acad. Part A 2002; 68: 141
  • 8 Fittig R. Justus Liebigs Ann. Chem. 1901; 314: 1
    • 9a Ohsawa S, Morino K, Sudo A, Endo T. Macromolecules 2011; 44: 1814
    • 9b Yamasaki R, Sudo A, Endo T. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 2462
    • 10a Parker WL, Johnson F. J. Org. Chem. 1973; 38: 2489
    • 10b Walraven HG. M, Pandit UK. Tetrahedron 1980; 36: 321
    • 10c Strunz GM, Lal GS. Can. J. Chem. 1982; 60: 2528
    • 11a Weise CF, Lauridsen VH, Rambo RS, Iversen EH, Olsen ML, Jørgensen KA. J. Org. Chem. 2014; 79: 3537
    • 11b Jiang H, Albrecht Ł, Jørgensen KA. Chem. Sci. 2013; 4: 2287
    • 11c Albrecht Ł, Dickmeiss G, Acosta FC, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
    • 12a Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 12b For a review on squaramides, see: Alemán J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
    • 12c Mechanism: Kótai B, Kardos G, Hamza A, Farkas V, Pápai I, Soós T. Chem. Eur. J. 2014; 20: 5631
    • 13a Li B.-J, Jiang L, Liu M, Chen Y.-Ch, Ding L.-S, Wu Y. Synlett 2005; 603
    • 13b Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
    • 13c McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
    • 13d Ye J, Dixon DJ, Peter S, Hynes PS. Chem. Commun. 2005; 4481
    • 13e Mechanism: Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
  • 14 Berkes B, Ozsváth K, Molnár L, Gáti T, Holczbauer T, Kardos G, Soós T. Chem. Eur. J. 2016; 22: 18101
  • 15 For details see the Supporting Information.
    • 16a Dedeoglu B, Catak S, Houk KN, Aviyente V. ChemCatChem 2010; 2: 1122
    • 16b Blise K, Cvitkovic MW, Gibbs NJ, Roberts SF, Whitaker RM, Hofmeister GE, Kohen D. J. Org. Chem. 2017; 82: 1347
  • 17 Mechanism of lactone hydrolysis: Gómez-Bombarelli R, Calle E, Casado J. J. Org. Chem. 2013; 78: 6868
  • 18 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 16, Revision B.01. Gaussian, Inc; Wallingford CT: 2016