Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
![](/products/assets/desktop/img/oa-logo.png)
CC BY-ND-NC 4.0 · Synthesis 2019; 51(05): 1196-1206
DOI: 10.1055/s-0037-1611656
DOI: 10.1055/s-0037-1611656
feature
GlucoSiFA and LactoSiFA: New Types of Carbohydrate-Tagged Silicon-Based Fluoride Acceptors for 18F-Positron Emission Tomography (PET)
Natural Sciences and Engineering Research Council of Canada (NSERC) research grant to R.S.Further Information
Publication History
Received: 11 December 2018
Accepted: 17 December 2018
Publication Date:
24 January 2019 (online)
![](https://www.thieme-connect.de/media/synthesis/201905/lookinside/thumbnails/ss-2018-z0819-fa_10-1055_s-0037-1611656-1.jpg)
Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue
Abstract
GlucoSiFA derivatives bearing an azide or alkynyl side chain were obtained from peracetyl-d-glucose using as key step a tosylate substitution by a SiFA thiolate obtained from 4-(di-tert-butylfluorsilyl)benzenethiol. In analogy, two-fold SiFA-substituted maltose and lactose derivatives were synthesized via bistosylates. Introduction of an acetal-protecting group in β-d-azidolactose allowed the synthesis of a LactoSiFA derivative bearing only one SiFA moiety.
Key words
carbohydrates - silicon-based fluoride acceptors - nucleophilic substitution - tosylation - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611656.
- Supporting Information
-
References
- 1 Shukla AK, Kumar U. J. Med. Phys. 2006; 31: 13
- 2a Ametamey SM, Honer M, Schubiger PA. Chem. Rev. 2008; 108: 1501
- 2b Schirrmacher R, Wängler C, Schirrmacher E. Mini-Rev. Org. Chem. 2007; 4: 317
- 2c Miller PW, Long NJ, Vilar R, Gee AD. Angew. Chem. Int. Ed. 2008; 47: 8998
- 3a Ying L. Sci. China Chem. 2013; 56: 1682
- 3b Gao Z, Gouverneur V, Davis BG. J. Am. Chem. Soc. 2013; 135: 13612
- 3c Brust P, Van den Hoff J, Steinbach J. Neurosci. Bull. 2014; 30: 777
- 3d Liang SH, Vasdev N. Angew. Chem. Int. Ed. 2014; 53: 2
- 3e Fehler SK, Maschauer S, Höfling SB, Bartuschat AL, Tschammer N, Hübner H, Gmeiner P, Prante O, Heinrich MR. Chem. Eur. J. 2014; 20: 370
- 3f Van der Born D, Pees A, Poot AJ, Orru RV. A, Windhorst AD, Vugts DJ. Chem. Soc. Rev. 2017; 46: 4709
- 3g Jakobsson JE, Grønnevik G, Riss PJ. Chem. Commun. 2017; 53: 12906
- 4 Gens TA, Wethongton JA, Brosi AR. J. Phys. Chem. 1958; 62: 1593
- 5a Smith GE, Sladen HL, Biagini SC. G, Blower PJ. Dalton Trans. 2011; 40: 6196
- 5b Chansaenpak K, Vabre B, Gabbai FP. Chem. Soc. Rev. 2016; 45: 954
- 5c Gauthier VB, Bailey JJ, Liu Z, Wängler B, Wängler C, Jurkschat K, Perrin DM, Schirrmacher R. Bioconjugate Chem. 2016; 27: 267
- 5d Wilson TC, Cailly T, Gouverneur V. Chem. Soc. Rev. 2018; 47: 6990
- 5e Schirrmacher R, Bernard-Gauthier V, Schirrmacher E, Bailey JJ, Jurkschat K, Wängler C, Wängler B. In Fluorine in Life Sciences: Pharmaceuticals, Medicinal Diagnostics, and Agrochemicals . Haufe G. Elsevier; Amsterdam: 2019. Chap. 15
- 6 Mu LJ, Hohne A, Schubiger RA, Ametamey SM, Graham K, Cyr JE, Dinkelborg L, Stellfeld T, Srinivasan A, Voigtmann U, Klar U. Angew. Chem. Int. Ed. 2008; 47: 4922
- 7a Schirrmacher R, Bradtmöller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, Buchholz HG, Bartenstein P, Wängler B, Niemeyer CM, Jurkschat K. Angew. Chem. Int. Ed. 2006; 45: 6047
- 7b Tietze LF, Schmuck K. Synlett 2011; 1697
- 7c Joyard Y, Azzouz R, Bischoff L, Papamicaël C, Labar D, Bol A, Bol V, Vera P, Grégoire V, Levacher V, Bohn P. Bioorg. Med. Chem. 2013; 21: 3680
- 7d Jana S, Al-huniti MH, Yang BY, Lu S, Pike VW, Lepore SD. J. Org. Chem. 2017; 82: 2329
- 7e Tisseraud M, Schulz J, Vimont D, Berlande M, Fernandez P, Hermange P, Fouquet E. Chem. Commun. 2018; 54: 5098
- 7f Boutureira O, Bernardes GJ. L, D’Hooge F, Davis BG. Chem. Commun. 2011; 47: 10010
- 8 Iovkova L, Wängler B, Schirrmacher E, Schirrmacher R, Quandt G, Boening G, Schürmann M, Jurkschat K. Chem. Eur. J. 2009; 15: 2140
- 9 Yamamura H, Kawasaki J, Saito H, Araki S, Kawai M. Chem. Lett. 2001; 30: 706
- 10 Ying L, Gervay-Hague J. Carbohydr. Res. 2003; 338: 835
- 11 CCDC 1866515 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 12 Lai Y.-C, Luo C.-H, Chou H.-C, Yang C.-J, Lu L, Chen C.-S. Tetrahedron Lett. 2016; 57: 2474
- 13 Bernardes GJ. L, Marston JP, Batsanov AS, Howard JA. K, Davis BG. Chem. Commun. 2007; 3145
- 14 Jha AK, Jain N. Tetrahedron Lett. 2013; 54: 4738
- 15 Liu F, Tang P, Ding R, Liao L, Wang L, Wang M, Wang J. Dalton Trans. 2017; 46: 7515
- 16 Tong Z, Pu S, Xiao Q, Liu G, Cui S. Tetrahedron Lett. 2013; 54: 474
- 17 Mauceri A, Borocci S, Galantini L, Giansanti L, Mancini G, Martino A, Manni LS, Sperduto C. Langmuir 2014; 30: 11301
- 18 Chatterjee D, Paul A, Yadav R, Yadav S. RSC Adv. 2015; 5: 29669
- 19 Yuan X, Cheng S, Shi Y, Xue W. Synthesis 2014; 46: 331
- 20 Okafor IS, Wang G. Carbohydr. Res. 2017; 451: 81
- 21 Eisink NN. H. M, Lohse J, Witte MD, Minnaard AJ. Org. Biomol. Chem. 2016; 14: 4859
- 22 Ma D.-L, Shum TY.-T, Zhang F, Che C.-M, Yang M. Chem. Commun. 2005; 4675
- 23 Maki T, Ishida K. J. Org. Chem. 2007; 72: 6427
- 24 Sun B, Jiang H. Tetrahedron Lett. 2012; 53: 5711
- 25 Calatrava-Pérez E, Bright SA, Achermann S, Moylan C, Senge MO, Veale EB, Williams DC, Gunnlaugsson T, Scanlan EM. Chem. Commun. 2016; 52: 13086
- 26 Abellán Flos M, García Moreno MI, Ortiz Mellet C, García Fernández JM, Nierengarten J.-F, Vincent SP. Chem. Eur. J. 2016; 22: 11450
- 27 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
- 28 Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA. K, Puschmann H. J. Appl. Cryst. 2009; 42: 339
- 29 Spek AL. Acta Crystallogr., Sect. D 2009; 65: 148