RSS-Feed abonnieren
DOI: 10.1055/s-0037-1611708
Palladium-Catalyzed Formation of Substituted Tetrahydropyrans: Mechanistic Insights and Structural Revision of Natural Products
The authors are grateful to FAPESP (grants 2013/07607-8, 2014/25474-8, and 2016/12541-4) and CONICET (PIP 11220130100660CO) for financial support.Publikationsverlauf
Received: 17. September 2018
Accepted after revision: 26. November 2018
Publikationsdatum:
29. Januar 2019 (online)
This work is dedicated to Professor Albert J. Kascheres for his guidance and positive example to one of us (R.A.P.).
Abstract
A comprehensive study on the stereochemical outcome of palladium-catalyzed formation of 2,4,6-trisubstituted tetrahydropyrans through cyclization of the corresponding allylic acetates using both Pd(0) and Pd(II) catalysts is presented. We have found that the stereochemical outcome of this cyclization is dependent not only on the stereochemistry of the acyclic precursor but also on the nature of the palladium catalyst. These results were applied to the total synthesis of the putative structure of cryptoconcatone H. Experimental and computational DP4+ NMR results were used to assess the structures proposed for cryptoconcatones K and L.
Key words
tetrahydropyran - palladium catalysis - DP4+ - structural revision - natural product synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037–1611708.
- Supporting Information I
- Supporting Information II
-
References
- 1a Clarke PA, Santos S. Eur. J. Org. Chem. 2006; 2045
- 1b Larrosa I, Romea P, Urpi F. Tetrahedron 2008; 64: 2683
- 1c Smith AB. III, Fox RJ, Razler TM. Acc. Chem. Res. 2008; 41: 675
- 1d Olier C, Kaafarani M, Gastaldi S, Bertrand MP. Tetrahedron 2010; 66: 413
- 1e Han X, Peh G, Floreancig PE. Eur. J. Org. Chem. 2013; 1193
- 1f Nasir NM, Ermanis K, Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
- 1g Fuwa H. Mar. Drugs 2016; 14: 65
- 1h Zhang Z, Tong R. Synthesis 2017; 49: 4899
- 2a Stork G, Poirier JM. J. Am. Chem. Soc. 1983; 105: 1073
- 2b Trost BM, Tenaglia A. Tetrahedron Lett. 1988; 29: 2729
- 2c Semmelhack MF, Kim CR, Dobler W, Meier M. Tetrahedron Lett. 1989; 30: 4928
- 3a Trost BM, Machacek MR. Angew. Chem. Int. Ed. 2002; 41: 4693
- 3b Trost BM, Machacek MR, Faulk BD. J. Am. Chem. Soc. 2006; 128: 6745
- 4 Hansen EC, Lee D. Tetrahedron Lett. 2004; 45: 7151
- 5a Uenishi J, Ohmi M, Ueda A. Tetrahedron: Asymmetry 2005; 16: 1299
- 5b Uenishi J, Ohmi M. Angew. Chem. Int. Ed. 2005; 44: 2756
- 5c Kawai N, Lagrange J.-M, Ohmi M, Uenishi J. J. Org. Chem. 2006; 71: 4530
- 5d Kawai N, Hande SM, Uenishi J. Tetrahedron 2007; 63: 9049
- 5e Kawai N, Lagrange J.-M, Uenishi J. Eur. J. Org. Chem. 2007; 2808
- 5f Uenishi J, Vikhe YS, Kawai N. Chem. Asian J. 2008; 3: 473
- 5g Ida A, Hoshiya N, Uenishi J. Heterocycles 2015; 90: 1082
- 6 Hanessian S, Focken T, Oza R. Tetrahedron 2011; 67: 9870
- 7 Shin I, Wang G, Krische MJ. Chem. Eur. J. 2014; 20: 13382
- 8a Molinski TF, Morinaka BI. Tetrahedron 2012; 68: 9307
- 8b Carneiro VM. T, Avila CM, Balunas MJ, Gerwick WH, Pilli RA. J. Org. Chem. 2014; 79: 630
- 8c Willwacher J, Heggen B, Wirtz C, Thiel W, Fürstner A. Chem. Eur. J. 2015; 21: 10416
- 8d Ren Z, Hao Y, Hu X. Org. Lett. 2016; 18: 4958
- 9a Maier ME. Nat. Prod. Rep. 2009; 26: 1105
- 9b Nicolaou KC, Snyder SA. Angew. Chem. Int. Ed. 2005; 44: 1012
- 9c Yoo H.-D, Nam S.-J, Chin Y.-M, Kim M.-S. Arch. Pharmacal. Res. 2016; 39: 143
- 9d Della-Felice F, Pilli RA, Sarotti MA. J. Braz. Chem. Soc. 2018; 29: 1041
- 10 Della-Felice F, Sarotti AM, Pilli RA. J. Org. Chem. 2017; 82: 9191
- 11a Yang B.-Y, Kong L.-Y, Wang X.-B, Zhang Y.-M, Li R.-J, Yang M.-H, Luo J.-G. J. Nat. Prod. 2016; 79: 196
- 11b Yang B.-Y, Shi Y.-M, Luo J.-G, Kong L.-Y. Nat. Prod. Res. 2017; 31: 1409
- 12a Kim IS, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2008; 130: 14891
- 12b Gao X, Townsend IA, Krische MJ. J. Org. Chem. 2011; 76: 2350
- 12c Shin I, Hong S, Krische MJ. J. Am. Chem. Soc. 2016; 138: 14246
- 13a Hassan A, Lu Y, Krische MJ. Org. Lett. 2009; 11: 3112
- 13b Dechert-Schmitt A.-MR, Schmitt DC, Krische MJ. Angew. Chem. Int. Ed. 2013; 52: 3195
- 14 Gao Y, Klunder JM, Hanson RM, Masamune H, Ko SY, Sharpless KB. J. Am. Chem. Soc. 1987; 109: 5765
- 15 When a mixture of products was formed, the yield of each component was estimated from the mass and the molar ratio observed in the 1H NMR spectrum of chromatographically purified compounds.
- 16a Mackenzie PB, Whelan J, Bosnich B. J. Am. Chem. Soc. 1985; 107: 2046
- 16b Auburn PR, Mackenzie PB, Bosnich B. J. Am. Chem. Soc. 1985; 107: 2033
- 16c Granberg KL, Baeckvall JE. J. Am. Chem. Soc. 1992; 114: 6858
- 16d Trost BM, Krische MJ, Radinov R, Zanoni G. J. Am. Chem. Soc. 1996; 118: 6297
- 17 Hansen and Lee (ref. 4) and Uenishi and co-workers (ref. 5b) also mentioned during their studies the formation of a side product coming from beta-hydride elimination of the Pd-π-allyl complex
- 18 The (6′S) configuration in 21 was defined with Kishi’s method after deacetylation, observing C-4′ at 68.1 ppm in CD3OD, corresponding to a syn/anti motif. See: Kobayashi Y, Tan C.-H, Kishi Y. Helv. Chim. Acta 2000; 83: 2562
- 19 The yield estimated by molar ratio (1H NMR) is after purification. The starting materials 9, 10, 19, and 20 were employed as a 95:5 diastereoisomeric mixture at the benzylic position, and the reported yields refer to the excess of the by-product formed when considering the diastereoisomeric ratio in the starting materials
- 20 Ghebreghiorgis T, Kirk BH, Aponick A, Ess DH. J. Org. Chem. 2013; 78: 7664
- 21a Saielli G, Bagno A. Org. Lett. 2009; 11: 1409
- 21b Wang C.-X, Chen G.-D, Feng C.-C, He R.-R, Qin S.-Y, Hu D, Chen H.-R, Liu X.-Z, Yao XS, Gao H. Chem. Commun. 2016; 1250
- 21c After submission of this work, a total synthesis of putative structure 4 was also reported by: Csókás D, Bates R. W. Synlett 2019; 30: 178
- 22a Lodewyk MW, Siebert MR, Tantillo DJ. Chem. Rev. 2012; 112: 1839
- 22b Grimblat N, Sarotti AM. Chem. Eur. J. 2016; 22: 12246
- 23 Smith SG, Goodman JM. J. Am. Chem. Soc. 2010; 132: 12946
- 24a Grimblat N, Zanardi MM, Sarotti AM. J. Org. Chem. 2015; 80: 12526
- 24b Zanardi MM, Suárez AG, Sarotti AM. J. Org. Chem. 2017; 82: 1873
- 25a Evans RH. Jr, Ellestad GA, Kunstmann MP. Tetrahedron Lett. 1969; 22: 1791
- 25b Murayana T, Sugiyama T, Yamashita K. Agric. Biol. Chem. 1987; 51: 2055
- 25c Yang Z-C, Jiung X-B, Wang Z-M, Zhou W-S. J. Chem. Soc., Perking Trans. I, 1997; 317
- 26 Zhao W, Kotik M, Iacazio G, Archelas A. Adv. Synth. Catal. 2015; 357: 1895
- 27a Lehmann J, Lloyd-Jones GC. Tetrahedron 1995; 51: 8863
- 27b Gärtner M, Mader S, Seehafer K, Helmchen G. J. Am. Chem. Soc. 2011; 133: 2072
- 27c Hui L, Yan L, Zhong-Liu W. Chem. Commun. 2011; 2610
- 28a Chen P, Xiang P. Tetrahedron Lett. 2011; 52: 5758
- 28b Marion N, Gealageas N, Nolan SP. Org. Lett. 2007; 9: 2653
- 29 Chloroform as reference at δ = 7.26 ppm (1H NMR) and δ = 77.26 ppm (13C NMR), as described for the natural product (ref. 11a)
For selected reviews on the synthesis of pyrans, see:
For pioneering work on this subject, see for example:
For selected recent examples of revised structures of natural products, see:
See for example: