Synthesis 2019; 51(11): 2287-2292
DOI: 10.1055/s-0037-1611726
paper
© Georg Thieme Verlag Stuttgart · New York

A Graphene Oxide Nanosheet Supported NHC–Palladium Complex as a Highly Efficient and Recyclable Suzuki Coupling Catalyst

Yingjie Qian
,
Jaeil So
,
Sang-Yung Jung
,
Sosan Hwang
,
Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea   Email: mjjin@inha.ac.kr   Email: seshim@inha.ac.kr
,
Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea   Email: mjjin@inha.ac.kr   Email: seshim@inha.ac.kr
› Author Affiliations
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant number: NRF-2015R1A4A1042434).
Further Information

Publication History

Received: 30 October 2018

Accepted after revision: 17 January 2019

Publication Date:
20 March 2019 (online)


These authors contributed equally to this work.

Abstract

A practical heterogeneous catalyst was prepared by anchoring a triazine-tethered N-heterocyclic carbene (NHC)–palladium complex on the surface of graphene oxide (GO) nanosheets. The immobilized complex was characterized by X-ray photoelectron spectroscopy, field-emission transmission electron microscopy, energy-dispersive X-ray spectroscopy, and surface area analysis. It proved to be a highly active and durable heterogeneous catalyst for Suzuki coupling reactions. At room temperature, the use of this catalyst enabled the preparation of various biaryls and heterobiaryls in short reaction times. The catalytic system could be recycled at least 10 times with almost consistent activity. The results reveal that the stable palladium complex is strongly anchored on the surface of GO nanosheets. Interestingly, an open planar network of the GO nanosheet support plays a role during the catalytic process in enhancing the catalytic activity.

Supporting Information