Subscribe to RSS
DOI: 10.1055/s-0037-1611743
Acyl Transfer Strategies as Transient Activations for Enantioselective Synthesis
The Centre National de la Recherche Scientifique (CNRS) and Aix-Marseille Université are gratefully acknowledged for financial support.Publication History
Received: 16 January 2019
Accepted after revision: 29 January 2019
Publication Date:
14 March 2019 (online)
Dedicated to Michel Quintard on the occasion of his retirement
Abstract
In order to circumvent reactivity or selectivity issues associated with the addition of enolates to electrophiles, chemists have devised innovative methods involving transient activating groups. One of these powerful methods consists of the use of activated ketones, such as α-nitroketones, β-dicarbonyl compounds or β-ketosulfones, with electrophiles possessing a latent hydroxy or amine function. In the presence of a suitable catalyst, an enantioselective addition to the electrophile is facilitated triggering a subsequent Claisen-type fragmentation resulting in an acyl transfer. This subsequent step unveils the desired mono-activated function while directly transferring the ketone, forming in situ on the other side an ester or an amide.
1 Introduction
2 Intramolecular Acyl Transfer with Acyclic Substrates
2.1 Bifunctional Catalysis
2.2 Aminocatalysis
3 Intermolecular Acyl Transfer with Acyclic Substrates
4 Medium-Sized-Ring Formation with Cyclic Substrates
5 Conclusion
-
References
- 1a Hendrickson JB. J. Am. Chem. Soc. 1975; 97: 5784
- 1b Trost BM. Science 1991; 254: 1471
- 1c Wender PA, Miller BL. Nature 2009; 460: 197
- 1d Gaich T, Baran PS. J. Org. Chem. 2010; 75: 4657
- 2a Beutner GL, Denmark SE. Angew. Chem. Int. Ed. 2013; 52: 9086
- 2b Kan SB. J, Ng KK.-H, Paterson I. Angew. Chem. Int. Ed. 2013; 52: 9097
- 2c Sutar RL, Joshi NN. Tetrahedron: Asymmetry 2013; 24: 1345
- 2d Kitanosono T, Kobayashi S. Adv. Synth. Catal. 2013; 355: 3095
- 2e For a pioneering contribution, see: Mukaiyama T, Banno K, Narasaka K. J. Am. Chem. Soc. 1974; 96: 7503
- 3a Pan Y, Tan C.-H. Synthesis 2011; 2044
- 3b Wang Z.-L. Adv. Synth. Catal. 2013; 355: 2745
- 3c Nakamura S. Org. Biomol. Chem. 2014; 12: 394
- 3d Lalic G, Aloise AD, Shair MD. J. Am. Chem. Soc. 2003; 125: 2852
- 3e Magdziak D, Lalic G, Lee HM, Fortner KC, Aloise AD, Shair MD. J. Am. Chem. Soc. 2005; 127: 7284
- 3f Lubkoll J, Wennemers H. Angew. Chem. Int. Ed. 2007; 46: 6841
- 3g Ricci A, Pettersen D, Bernardi L, Fini F, Fochi M, Perez Herrera R, Sgarzani V. Adv. Synth. Catal. 2007; 349: 1037
- 3h Yin L, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 9610
- 3i Bae HY, Sim JH, Lee JW, List B, Song CE. Angew. Chem. Int. Ed. 2013; 52: 12143
- 3j Quintard A, Rodriguez J. Chem. Eur. J. 2015; 21: 14717
- 3k Saadi J, Wennemers H. Nat. Chem. 2016; 8: 276
- 3l Quintard A, Rodriguez J. ACS Catal. 2017; 7: 5513
- 3m Akamatsu M, Sakai N, Matile S. J. Am. Chem. Soc. 2017; 139: 6558
- 4a Hill A. Nat. Prod. Rep. 2006; 23: 256
- 4b Staunton J, Weissman KJ. Nat. Prod. Rep. 2001; 18: 380
- 5a Tunge JA, Burger EO. Eur. J. Org. Chem. 2005; 1715
- 5b Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
- 6a Han C, Kim EH, Colby DA. J. Am. Chem. Soc. 2011; 133: 5802
- 6b Saidalimu I, Fang X, He X.-P, Liang J, Yang X, Wu F. Angew. Chem. Int. Ed. 2013; 52: 5566
- 6c Zhang P, Wolf C. Angew. Chem. Int. Ed. 2013; 52: 7869
- 6d Xie C, Wu L, Han J, Soloshonok VA, Pan Y. Angew. Chem. Int. Ed. 2015; 54: 6019
- 7a Castro AM. M. Chem. Rev. 2004; 104: 2939
- 7b Ortega-Martínez A, Molina C, Moreno-Cabrerizo C, Sansano JM, Nájera C. Eur. J. Org. Chem. 2018; 2394
- 7c Ballini R, Petrini M, Polimanti O. J. Org. Chem. 1996; 61: 5652
- 7d Giorgi G, Arroyo FJ, Lopez-Alvarado P, Menendez JC. Synlett 2010; 2465
- 7e Giorgi G, Arroyo FJ, Lopez-Alvarado P, Menendez JC. Tetrahedron 2011; 67: 5582
- 7f Richter C, Voigt B, Mahrwald R. RSC Adv. 2015; 5: 45571
- 7g Ding R, Wolf C. Chem. Commun. 2016; 52: 3576
- 7h Ortega-Martínez A, Molina C, Moreno-Cabrerizo C, Sansano JM, Nájera C. Synthesis 2017; 49: 5203
- 8 Lu R.-J, Yan Y.-Y, Wang J.-J, Du Q.-S, Nie S.-Z, Yan M. J. Org. Chem. 2011; 76: 6230
- 9 Gao Y, Ren Q, Siau W.-Y, Wang J. Chem. Commun. 2011; 47: 5819
- 10 Li P, Chan SH, Chan AS. C, Kwong FY. Org. Biomol. Chem. 2011; 9: 7997
- 11 Liu Y, Wang Y, Song H, Zhou Z, Tang C. Adv. Synth. Catal. 2013; 355: 2544
- 12 Zhou J, Jia L.-N, Wang Q.-L, Peng L, Tian F, Xu X.-Y, Wang L.-X. Tetrahedron 2014; 70: 8665
- 13 Quintard A, Rodriguez J. Adv. Synth. Catal. 2016; 358: 3362
- 14 Urbanietz G, Atodiresei I, Enders D. Synthesis 2014; 46: 1261
- 15 Maity R, Gharui C, Sil AK, Pan SC. Org. Lett. 2017; 19: 662
- 16 Bania N, Pan SC. Org. Biomol. Chem. 2019; 17: 1718
- 17 Mondal K, Pan SC. J. Org. Chem. 2018; 83: 5301
- 18 Gharui C, Behera D, Pan SC. Adv. Synth. Catal. 2018; 360: 4502
- 19a Bertelsen S, Jørgensen KA. Chem. Soc. Rev. 2009; 38: 2178
- 19b Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138
- 20a Quintard A, Constantieux T, Rodriguez J. Angew. Chem. Int. Ed. 2013; 52: 12883
- 20b Roudier M, Constantieux T, Quintard A, Rodriguez J. Org. Lett. 2014; 16: 2802
- 20c Roudier M, Constantieux T, Rodriguez J, Quintard A. Chimia 2016; 70: 97
- 21a Quintard A, Rodriguez J. Angew. Chem. Int. Ed. 2014; 53: 4044
- 21b Quintard A, Rodriguez J. ChemSusChem 2016; 9: 28
- 21c For a selected example of the use of this complex, see: Casey CP, Guan H. J. Am. Chem. Soc. 2007; 129: 5816
- 22a Roudier M, Constantieux T, Quintard A, Rodriguez J. ACS Catal. 2016; 6: 5236
- 22b Rodriguez J, Quintard A. Chimia 2018; 72: 580
- 23 For the limited reactivity of ketoesters in the fragmentation, see: Quintard A, Roudier M, Rodriguez J. Synthesis 2018; 50: 785
- 24 Zhu Y, Zhang L, Luo S. J. Am. Chem. Soc. 2016; 138: 3978
- 25 Maity R, Pan SC. Org. Biomol. Chem. 2018; 16: 1598
- 26 Qian J, Yi W, Huang X, Jasinski JP, Zhang W. Adv. Synth. Catal. 2016; 358: 2811
- 27a Grenning AJ, Tunge JA. Angew. Chem. Int. Ed. 2011; 50: 1688
- 27b Grenning AJ, Tunge JA. J. Am. Chem. Soc. 2011; 133: 14785
- 27c Jha M, Chou T.-Y, Blunt B. Tetrahedron 2011; 67: 982
- 27d Maji T, Ramakumar K, Tunge JA. Chem. Commun. 2014; 50: 14045
- 27e Kumar N, Das MK, Ghosh S, Bisai A. Chem. Commun. 2017; 53: 2170
- 27f Zhou X.-L, Ren L, Wang P.-S. J. Org. Chem. 2017; 82: 9794
- 27g Ortega-Martínez A, de Lorenzo R, Sansano JM, Nájera C. Tetrahedron 2018; 74: 253
- 28 Grenning AJ, Van Allen CK, Maji T, Lang SB, Tunge JA. J. Org. Chem. 2013; 78: 7281
- 29 Mukherjee H, McDougal NT, Virgil SC, Stoltz BM. Org. Lett. 2011; 13: 825
- 30a Beck TM, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1903
- 30b For the racemic version, see: Beck TM, Breit B. Org. Lett. 2016; 18: 124
- 31a Mahajan JR. Synthesis 1976; 110
- 31b Mahajan JR, Carvalho HD. Synthesis 1979; 518
- 31c Mahajan JR, Resck IS. Synthesis 1980; 998
- 31d Bhat V, Cookson RC. J. Chem. Soc., Chem. Commun. 1981; 1123
- 31e Cookson RC, Ray PS. Tetrahedron Lett. 1982; 23: 3521
- 31f Kostova K, Lorenzi-Riatsch A, Nakashita Y, Hesse M. Helv. Chim. Acta 1982; 65: 249
- 31g Onu N, Miyake H, Kaji A. J. Org. Chem. 1984; 49: 4997
- 31h Schore NE, Nadji SD. J. Org. Chem. 1987; 52: 5296
- 31i Xie Z.-F, Suemune H, Sakai K. J. Chem. Soc., Chem. Commun. 1988; 612
- 31j Giorgi G, Miranda S, López-Alavarado P, Avendano C, Rodriguez J, Menéndez JC. Org. Lett. 2005; 7: 2197
- 31k Coquerel Y, Bensa D, Doutheau A, Rodriguez J. Org. Lett. 2006; 8: 4819
- 31l Coquerel Y, Filippini M.-H, Bensa D, Rodriguez J. Chem. Eur. J. 2008; 14: 3078
- 32 Roudier M, Constantieux T, Quintard A, Rodriguez J. Eur. J. Org. Chem. 2015; 5709
- 33 Zhou Y, Wei Y-L, Rodriguez J, Coquerel Y. Angew. Chem. Int. Ed. 2019; 58: 456
For reviews, see:
For reviews, see:
For pioneering contributions, see:
For reviews, see
Alternatively, decarboxylative transformations can be performed from activated esters (palladium-catalyzed allylation for example), see:
For pioneering results, see:
For reviews, see:
For non-enantioselective examples, see:
For reviews, see:
For more recent examples, see:
For pioneering examples of the synthesis of medium-sized rings by ring expansion through Claisen-type fragmentation, see: