Synlett 2019; 30(07): 833-836
DOI: 10.1055/s-0037-1611749
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Direct α-Nitration of Nitrostilbenes with Nitrogen Dioxide

Kai Hao Chen
,
Xi Gao
,
Hui Zou
,
Guan Sheng Xiao
,
Xin Hua Peng*
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Email: xhpeng@mail.njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 25 December 2018

Accepted after revision: 08 February 2019

Publication Date:
15 March 2019 (online)


Abstract

A novel and efficient method for the direct α-nitration of nitrostilbenes was developed in which NO2 was used as the nitro source. This method provided (E)-α-nitrostilbenes derivatives in moderate to good yields. A broad substrate scope, mild and convenient conditions, and high stereoselectivity are important features of this method.

Supporting Information

 
  • References and Notes

    • 1a Barrett AG. M, Graboski GG. Chem. Rev. 1986; 86: 751
    • 1b Ono N. The Nitro Group in Organic Synthesis . Wiley-VCH; New York: 2001
    • 1c Bui T, Syed S, Barbas CF. III. J. Am. Chem. Soc. 2009; 131: 8758
    • 1d Sukhorukov AY, Sukhanova AA, Zlotin SG. Tetrahedron 2016; 72: 6191
    • 1e Jana S, Chakraborty A, Shirinian VZ, Hajra A. Adv. Synth. Catal. 2018; 360: 2402
    • 2a Motornov VA, Muzalevskiy VM, Tabolin AA, Novikov RA, Nelyubina YV, Nenajdenko VG, Ioffe SL. J. Org. Chem. 2017; 82: 5274
    • 2b Adams JP, Paterson JR. J. Chem. Soc., Perkin Trans. 1 2000; 3695
    • 2c Albrecht Ł, Dickmeiss G, Cruz Acosta F, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
    • 2d Liu Y, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
    • 2e Martin NJ, Ozores L, List B. J. Am. Chem. Soc. 2007; 129: 8976
    • 2f Wang Y, Du Y, Huang X, Wu X, Zhang Y, Yang S, Chi YR. Org. Lett. 2017; 19: 632
    • 2g Trost BM, Wang Y. Angew. Chem. Int. Ed. Engl. 2018; 57: 11025
  • 3 Suzuki H, Mori T. J. Org. Chem. 1997; 62: 6498
  • 4 Jovel I, Prateeptongkum S, Jackstell R, Vogl N, Weckbecker C, Beller M. Adv. Synth. Catal. 2008; 350: 2493
  • 5 Maity S, Manna S, Rana S, Naveen T, Mallick A, Maiti D. J. Am. Chem. Soc. 2013; 135: 3355
  • 6 Maity S, Naveen T, Sharma U, Maiti D. Org. Lett. 2013; 15: 3384
  • 7 Naveen T, Maity S, Sharma U, Maiti D. J. Org. Chem. 2013; 78: 5949
  • 8 Liu W, Zhang Y, Guo H. J. Org. Chem. 2018; 83: 10518
  • 9 Zhao A, Jiang Q, Jia J, Xu B, Liu Y, Zhang M, Liu Q, Luo W, Guo C. Tetrahedron Lett. 2016; 57: 80
    • 10a Xu J.-H, Wei J.-P, Hao Z, Ma Q.-G, Peng X.-H. Chem. Commun. 2014; 50: 10710
    • 10b Du P, Brosmer JL, Peters DG. Org. Lett. 2011; 13: 4072
    • 10c Goyal S, Patel JK, Gangar M, Kumar K, Nair VA. RSC Adv. 2015; 5: 3187
    • 11a Shipp KG. J. Org. Chem. 1964; 29: 2620
    • 11b Shipp KG, Kaplan LA. J. Org. Chem. 1966; 31: 857
    • 11c Xu J, Wei J, Li F, Ma Q, Peng X. New J. Chem. 2014; 38: 5303
    • 12a Cho BR, Lee SJ, Lee SH, Son KH, Kim YH, Doo J.-Y, Lee GJ, Kang TI, Lee YK, Cho M, Jeon S.-J. Chem. Mater. 2001; 13: 1438
    • 12b Janowska K, Matczak R, Zakrzewski J, Krawczyk H. Tetrahedron Lett. 2012; 53: 6504
    • 12c Munshi P, Skelton BW, McKinnon JJ, Spackman MA. CrystEngComm 2008; 10: 197
    • 13a Greger JG, Yoon-Miller SJ, Bechtold NR, Flewelling SA, MacDonald JP, Downey CR, Cohen EA, Pelkey ET. J. Org. Chem. 2011; 76: 8203
    • 13b Zhao D, Zhu Y, Guo S, Chen W, Zhang G, Yu Y. Tetrahedron 2017; 73: 2872
    • 13c Bergner I, Opatz T. J. Org. Chem. 2007; 72: 7083
    • 14a Robertson DN. J. Org. Chem. 1960; 25: 47
    • 14b Bahner C, Dickson H, Moore L. J. Am. Chem. Soc. 1948; 70: 1982
    • 14c Russell GA, Kulkarni SV, Khanna RK. J. Org. Chem. 1990; 55: 1080
  • 15 Bryant DK, Challis BC, Lley J. J. Chem. Soc., Chem. Commun. 1989; 1027
  • 16 Saravanan S, Srinivasan PC. Synth. Commun. 2003; 33: 1261
  • 17 1,3,5-Trinitro-2-[(E)-1-nitro-2-phenylvinyl]benzene (2a): Typical Procedure A 35 mL sealed tube with a Teflon-lined cap was charged with 1,3,5-trinitro-2-[(E)-2-phenylvinyl]benzene (1a; 1 mmol), CuCl2∙2H2O (10 mol%), DCE (4 mL), and cold liquid NO2 (0.14 mL, 4 mmol). The tube was placed in an oil bath, which was stirred and heated at 60 °C for 3 h. The mixture was cooled to r.t., and the reaction was quenched with H2O. The resulting mixture was extracted with CH2Cl2 (3 × 30 mL), and the organic layers were combined, dried (Na2SO4), and concentrated under vacuum. The crude product was purified by column chromatography [silica gel, hexane–CH2Cl2 (2:3)] to give a yellow solid; yield: 274 mg (85%); mp 168–170 °C; Rf = 0.37 (CH2Cl2–hexane, 3:2). 1H NMR (300 MHz, DMSO-d 6): δ = 9.29 (s, 2 H), 8.71 (s, 1 H), 7.47 (d, J = 7.4 Hz, 1 H), 7.44–7.29 (m, 2 H), 7.20 (d, J = 7.4 Hz, 2 H). 13C NMR (126 MHz, DMSO-d 6): δ = 149.7, 149.6, 139.3, 138.9, 133.2, 131.5, 130.0, 129.1, 125.9, 124.5. HRMS (ESI-TOF): m/z [M + H]+ calcd. for C14H9N4O8: 361.0420; found 361.0413.
  • 18 CCDC 1884696 contains the supplementary crystallographic data for compound 2b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 19a Hernando E, Castillo RR, Rodríguez N, Gómez Arrayá R, Carretero JC. Chem. Eur. J. 2014; 20: 13854
    • 19b Tanaka M, Muro E, Ando H, Xu Q, Fujiwara M, Souma Y, Yamaguchi Y. J. Org. Chem. 2000; 65: 2972
    • 19c Beckhan LJ, Fessler WA, Kise MA. Chem. Rev. 1951; 48: 319-396