Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(08): 903-909
DOI: 10.1055/s-0037-1611777
DOI: 10.1055/s-0037-1611777
letter
Carbon–Oxygen Homocoupling of 2-Naphthols through Electrochemical Oxidative Dearomatization
This project was supported by the Open Fund of State Key Laboratory of Natural Medicines in China Pharmaceutical University, (Grant/Award Number: SKLNMKF201810) and the National Natural Science Foundation of China (Grant/Award Number: 21672153).Further Information
Publication History
Received: 14 February 2019
Accepted after revision: 11 March 2019
Publication Date:
11 April 2019 (online)
Abstract
A homocoupling reaction of 2-naphthols with formation of a C–O bond through electrochemical oxidative dearomatization in the presence of catalytic amounts of ferrocene and a ruthenium complex was developed. Mechanistic studies revealed that the reaction might proceed through coupling between two identical radical species. Moreover, a gram-scale experiment was performed to illustrate the potential practicability of this methodology in organic synthesis.
Key words
electrochemistry - homocoupling - C–O bond formation - naphthols - dearomatization - naphthyloxynaphthalenonesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611777.
- Supporting Information
-
References and Notes
- 1a Arnaudon M. C. R. Hebd. Seances Acad. Sci. 1858; 46: 1152
- 1b Pinto Mdo C. F. R, Pinto AV, de Oliveira CG. T. An. Acad. Bras. Cienc. 1980; 52: 481
- 1c Hooker SC. J. Am. Chem. Soc. 1936; 58: 1181
- 1d Hooker SC. J. Am. Chem. Soc. 1936; 58: 1168
- 1e da Silva EN. Jun, Pinto Mdo C. F. R, de Moura KC. G, de Simone CA, Nascimento CJ, Andrade CK. Z, Pinto AV. Tetrahedron Lett. 2009; 50: 1575
- 2 Li CJ, Li YZ, Pinto AV, Pardee AB. Proc. Natl. Acad. Sci. U. S. A. 1999; 96: 13369
- 3 Grazziotin JD, Schapoval EE, Chaves CG, Gleye J, Henriques AT. J. Ethnopharmacol. 1992; 36: 249
- 4 Pinto AV, Neves-Pinto C, Pinto Mdo C. F. R, Santa-Rita RM, Pezzella C, de Castro SL. Arzneim.-Forsch. 1997; 47: 74
- 5 da Silva EN, Cavalcanti BC, Guimarães TT, Pinto Mdo C. F. R, Cabral IO, Pessoa C, Costa-Lotufo LV, de Moraes MO, de Andrade CK. Z, dos Santos MR, de Simon CA, Goulart MO. F, Pinto AV. Eur. J. Med. Chem. 2011; 46: 399
- 6 IARC; In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Aromatic Azo Compounds, Vol. 8: International Agency for Research on Cancer: Lyon, 1975, 225.
- 7a Westmoreland C, Gatehouse DG. Carcinogenesis 1991; 12: 1403
- 7b Møller P, Wallin H. Mutat. Res. 2000; 462: 13
- 7c Zhang X, Jiang L, Geng C, Hu C, Yoshimura H, Zhong L. Free Radical Res. 2008; 42: 189
- 8a Dračínský M, Cvačka J, Semanská M, Martinek V, Frei E, Stiborová M. Chem. Res. Toxicol. 2009; 22: 1765
- 8b Martinek V, Sklenár J, Dračínský M, Sulc M, Hofbauerová K, Bezouska K, Frei E, Stiborová M. Toxicol. Sci. 2010; 117: 359
- 9a Avramenko AA, Bardin VV, Karelin AI, Krasilnikov VA, Tushin PP, Furin GG, Yakobson GG. Zh. Org. Khim. 1985; 21: 822
- 9b Kovtonyuk VN, Kobrina LS, Yakobson GG. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk 1984; 119
- 9c Kovtonyuk VN, Kobrina LS, Yakobson GG. J. Fluorine Chem. 1985; 28: 89
- 10 Sarkar D, Ghosh MK, Rout N, Kuila P. New J. Chem. 2017; 41: 3715
- 11 Uyanik M, Nishioka K, Ishihara K. Heterocycles 2017; 95: 1132
- 12a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 12b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 12c Tang S, Liu Y, Lei A. Chem. 2018; 4: 27
- 12d Yang Q.-L, Fang P, Mei T.-S. Chin. J. Chem. 2018; 36: 338
- 12e Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 12f Cao Y, He X, Wang N, Li H.-R, He L.-N. Chin. J. Chem. 2018; 36: 644
- 12g Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086. For selected recent examples, see
- 12h Hou Z.-W, Mao Z.-Y, Zhao H.-B, Melcamu YY, Lu X, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 9168
- 12i Gieshoff T, Schollmeyer D, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 9437
- 12j Tang S, Gao X, Lei A. Chem. Commun. 2017; 53: 3354
- 12k Zhao H.-B, Hou Z.-W, Liu Z.-J, Zhou Z.-F, Song J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587
- 12l Tang S, Wang S, Liu Y, Cong H, Lei A. Angew. Chem. Int. Ed. 2018; 57: 4737
- 12m Zhang S, Li L, Xue M, Zhang R, Xu K, Zeng C. Org. Lett. 2018; 20: 3443
- 12n Tian C, Massignan L, Meyer TH, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 2383
- 12o Shao A, Li N, Gao Y, Zhan J, Chiang C.-W, Lei A. Chin. J. Chem. 2018; 36: 619
- 12p Hou Z.-W, Yan H, Song J.-S, Xu H.-C. Chin. J. Chem. 2018; 36: 909
- 12q Xu F, Li YJ, Huang C, Xu HC. ACS Catal. 2018; 8: 3820
- 12r Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
- 12s Yuan Y, Cao Y, Qiao J, Lin Y, Jiang X, Weng Y, Tang S, Lei A. Chin. J. Chem. 2019; 37: 49
- 13a Mihelcic J, Moeller KD. J. Am. Chem. Soc. 2004; 126: 9106
- 13b Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
- 13c Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
- 14 Quideau S, Pouysegu L, Deffieux D, Ozanne A, Gagnepain J, Fabre I, Oxoby M. ARKIVOC 2003; (vi): 106
- 15 CCDC 1882014 contains the supplementary crystallographic data for compound 2a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 16a Qiu Y, Tian C, Massignan L, Rogge T, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 5818
- 16b Mei RH, Koeller J, Ackermann L. Chem. Commun. 2018; 54: 12879
- 17a Cai C.-Y, Xu H.-C. Nat. Commun. 2018; 9: 3551
- 17b Yuan Y, Cao Y, Lin Y, Li Y, Huang Z, Lei A. ACS Catal. 2018; 8: 10871
- 17c Xiong P, Long H, Song J, Wang Y, Li J.-F, Xu H.-C. J. Am. Chem. Soc. 2018; 140: 16387
- 17d Wang Y, Deng L, Mei H, Du B, Han J, Pan Y. Green Chem. 2018; 20: 3444
- 18 Xiong P, Xu H.-H, Song J, Xu H.-C. J. Am. Chem. Soc. 2018; 140: 2460
- 19a Zhu L, Xiong P, Mao Z.-Y, Wang Y.-H, Yan X, Lu X, Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 2226
- 19b Wu Z.-J, Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 4734
- 19c Wu Z.-J, Li S.-R, Long H, Xu H.-C. Chem. Commun. 2018; 54: 4601
- 19d Long H, Song J, Xu H.-C. Org. Chem. Front. 2018; 5: 3129
- 20 Elsler B, Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
- 21 Electrochemical Oxidative Homocoupling of 2-Naphthols; General Procedure A 25 mL four-necked flask equipped with stirrer bar, a reflux condenser, an RVC anode (100 pores/inch, 10 × 10 × 12 mm; Goodfellow Cambridge Ltd.), and a Pt plate cathode (10 × 12 × 0.1 mm; Beijing Global International Science and Technology Co., Ltd) was charged with the appropriate substituted 2-naphthol, [RuCl2(p-cymene)]2 (2.5 mol%), Cp2Fe (0.2 equiv), KPF6 (2.0 equiv), H2O (12.0 mL), and 1,4-dioxane (3.0 mL). Constant-current electrolysis (10 mA) was performed at 90 °C with magnetic stirring for 4 h. The resulting solution was then cooled to r.t., the layers was separated, and the aqueous phase was extracted with EtOAc (3 × 20 mL). The organic phases were combined, dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography. 1-Phenyl-1-[(1-phenyl-2-naphthyl)oxy]naphthalen-2(1H)-one (2a) Yellow foam solid; yield: 40.1 mg (92%); TLC: Rf = 0.45 (EtOAc–PE, 1:5). IR (neat): 2973, 1923, 1734, 1684, 1507, 1053, 697 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.85 (d, J = 7.4 Hz, 1 H), 7.71–7.64 (m, 2 H), 7.62 (d, J = 10.0 Hz, 1 H), 7.57–7.47 (m, 6 H), 7.39 (td, J = 7.2, 1.8 Hz, 1 H), 7.35–7.27 (m, 4 H), 7.16–7.11 (m, 1 H), 7.06 (dd, J = 10.1, 4.9 Hz, 2 H), 7.01–6.97 (m, 2 H), 6.42 (d, J = 9.1 Hz, 1 H), 6.25 (d, J = 10.0 Hz, 1 H).13C NMR (101 MHz, CDCl3): δ = 196.78, 150.02, 145.09, 143.89, 139.57, 137.11, 133.97, 131.81, 131.37, 130.79, 130.56, 129.71, 128.91, 128.87, 128.44, 128.21, 128.16, 127.82, 127.19, 126.94, 126.37, 125.93, 125.75, 125.48, 123.78, 116.41, 85.58, 29.84. HRMS (ESI): m/z [M + Na]+ calcd for C32H22NaO2: 461.1512; found: 461.1508.
For selected reviews, see:
For selected examples, see: