Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(17): 3241-3249
DOI: 10.1055/s-0037-1611819
DOI: 10.1055/s-0037-1611819
paper
Reactivity of 3-Bromofuran in Pd-Catalyzed C–H Bond Arylation toward the Synthesis of 2,3,5-Triarylfurans
A.S. acknowledges the Indo-French Centre for the Promotion of Advanced Research (IFCPAR, No. 5705-1) for a Ph.D. grant and research support. We also thank the CNRS and ‘Rennes Metropole’ for providing financial support.Further Information
Publication History
Received: 07 March 2019
Accepted after revision: 06 April 2019
Publication Date:
07 May 2019 (online)
Abstract
Arylation of the C–H bond at the C2 position of 3-bromofuran is achieved using aryl bromides as coupling partners in the presence of phosphine-free Pd(OAc)2/KOAc in DMA. This procedure gives C2,C5-di- and even C2,C4,C5-triarylated 3-bromofuran derivatives when larger amounts of aryl bromides are employed. In addition, C2,C3,C5-triarylated furans—containing three different aryl groups—are synthesized via a C2–H bond arylation/Suzuki reaction/C5–H bond arylation sequence.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611819.
- Supporting Information
-
References
- 1 Raczko J, Jurczak J. Furan in the Synthesis of Natural Products. In Studies in Natural Products Chemistry, Stereoselective Synthesis (Part J), Vol. 16. Atta-ur-Rahman Elsevier; Amsterdam: 1995: 639-685
- 2a Sperry JB, Wright DL. Curr. Opin. Drug Discovery Dev. 2005; 8: 723
- 2b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 2c Lukevits É, Demicheva L. Chem. Heterocycl. Compd. 1993; 29: 243
- 3 Wang GQ, Jiang M, Zhang Q, Wang R, Qu XL, Zhou GY. Prog. Chem. 2018; 30: 719
- 4a Li BL. Chin. J. Org. Chem. 2015; 35: 2487
- 4b Huang PS, Du J, Biewer MC, Stefan MC. J. Mater. Chem. A 2015; 3: 6244
- 5a Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CS. R, Gruter G.-JM, Coelho JF. J, Silvestre AJ. D. Polym. Chem. 2015; 6: 5961
- 5b Makarov AS, Uchuskin MG, Trushkov IV. Synthesis 2018; 50: 3059
- 5c Yin Z, He Y, Chiu P. Chem. Soc. Rev. 2018; 47: 8881
- 6 Moran WJ, Rodriguez A. Org. Prep. Proced. Int. 2012; 44: 103
- 7a Kakiuchi F, Kochi T. Synthesis 2008; 3013
- 7b Ackermann L, Vicente R, Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
- 7c Bellina F, Rossi R. Tetrahedron 2009; 65: 10269
- 7d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 7e Beck EM, Gaunt MJ. Top. Curr. Chem. 2010; 292: 85
- 7f Satoh T, Miura M. Synthesis 2010; 3395
- 7g Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
- 7h Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
- 7i Kozhushkov SI, Ackermann L. Chem. Sci. 2013; 4: 886
- 7j Rossi R, Bellina F, Lessi M, Manzini C. Adv. Synth. Catal. 2014; 356: 17
- 7k Zhang M, Zhang Y, Jie X, Zhao H, Li G, Su W. Org. Chem. Front. 2014; 1: 843
- 7l Yadav MR, Rit RK, Shankar M, Sahoo AK. Asian J. Org. Chem. 2015; 4: 846
- 7m Hirano K, Miura M. Chem. Lett. 2015; 44: 878
- 7n Mao S, Li H, Shi X, Soulé J.-F, Doucet H. ChemCatChem 2019; 11: 269
- 7o Murai M, Takai K. Synthesis 2019; 51: 40
- 8 Ohta A, Akita Y, Ohkuwa T, Chiba M, Fukunaga R, Miyafuji A, Nakata T, Tani N, Aoyagi Y. Heterocycles 1991; 31: 1951
- 9 Fu HY, Doucet H. Eur. J. Org. Chem. 2011; 7163
- 10 Glover B, Harvey KA, Liu B, Sharp MJ, Tymoschenko MF. Org. Lett. 2003; 5: 301
- 11 Dong JJ, Roy D, Roy RJ, Ionita M, Doucet H. Synthesis 2011; 3530
- 12 Battace A, Lemhadri M, Zair T, Doucet H, Santelli M. Organometallics 2007; 26: 472
- 13a Kobayashi K, Sugie A, Takahashi M, Masui K, Mori A. Org. Lett. 2005; 7: 5083
- 13b René O, Fagnou K. Org. Lett. 2010; 12: 2116
- 13c Brahim M, Smari I, Ben Ammar H, Ben Hassine B, Soule J.-F, Doucet H. Org. Chem. Front. 2015; 2: 917
- 14 CCDC 1883207 contains the supplementary crystallographic data for compound 1 in this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 15a For the synthesis of 2-aryl-3-bromofurans via cyclization reactions, see: Obrecht D. Helv. Chim. Acta 1989; 72: 447
- 15b For the synthesis of 2-aryl-3-bromofurans using a photoredox system see: Maity P, Kundu D, Ranu BC. Eur. J. Org. Chem. 2015; 1727
- 15c For the synthesis of 2-aryl-3-bromofurans via Suzuki reactions, see: Liu J.-t, Simmons CJ, Xie H, Yang F, Zhao X.-l, Tang Y, Tang W. Adv. Synth. Catal. 2017; 359: 693
- 16a Shibahara F, Yamaguchi E, Murai T. Chem. Commun. 2010; 46: 2471
- 16b Okazawa T, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2002; 124: 5286
- 17a Dudnik AS, Gevorgyan V. Angew. Chem. Int. Ed. 2007; 46: 5195
- 17b Mothe SR, Lauw SJ. L, Kothandaraman P, Chan PW. H. J. Org. Chem. 2012; 77: 6937
- 17c Wu J, Yoshikai N. Angew. Chem. Int. Ed. 2015; 54: 11107
- 17d Wu Y, Huang Z, Luo Y, Liu D, Deng Y, Yi H, Lee J.-F, Pao C.-W, Chen J.-L, Lei A. Org. Lett. 2017; 19: 2330
For general reviews on C–H bond functionalizations, see:
For selected examples of the synthesis of 2,3,5-triarylfurans containing three different aryl groups, see: