RSS-Feed abonnieren
DOI: 10.1055/s-0037-1611837
One-Pot Synthesis of Trifluoromethylated Pyrazol-4-yl-pyrrole-2,5-dione Derivatives
The authors thank the National Natural Science Foundation of China (No. 21272153), and the Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry for financial support.Publikationsverlauf
Received: 18. März 2019
Accepted after revision: 29. April 2019
Publikationsdatum:
21. Mai 2019 (online)

Abstract
Efficient and convenient one-pot, three-component reactions of pyrrolidone, aromatic aldehydes and 1-phenyl-3-trifluoromethyl-5-pyrazolone afforded highly functionalized trifluoromethylated pyrazol-4-ylpyrrole-2,5-dione derivatives in good yields. The effect of solvents on the reaction efficiency and yield was briefly investigated. The structures of products were determined by spectral methods and X-ray diffraction analysis. The latter showed that the products formed have a strong intramolecular hydrogen bond, which made them particularly stable and the corresponding annulated products were not obtained by treatment with dehydrating reagents.
Key words
fluorinated heterocycles - multicomponent reactions - pyrrolidone - Michael addition - hydrogen bondSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611837.
- Supporting Information
-
References
- 1a Zeng YW, Hu JB. Synthesis 2016; 48: 2137
- 1b Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
- 1c Wang XY, Wang X, Wang JB. Tetrahedron 2019; 75: 949
- 1d Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1e Wegert A, Miethchen R, Hein M, Reinke H. Synthesis 2005; 1850
- 1f Welch JT. Tetrahedron 1987; 43: 3123
- 2a Valero G, Companyo X, Rios R. Chem. Eur. J. 2011; 17: 2018
- 2b Cahard D, Bizet V. Chem. Soc. Rev. 2014; 43: 135
- 2c Hardy MA, Chachignon H, Cahard D. Asian J. Org. Chem. 2019; 8: in press; DOI: 10.1002/ajoc.201900004
- 2d Chen M, Yang Y, Ma JZ, Ouyang LP, Lu T, Wang HY, Meng FH, Ning CQ, Liu XY. ACS Appl. Mater. Inter. 2017; 9: 16824
- 2e Jeschke P. ChemBioChem 2004; 5: 570
- 2f Marsh EN. G, Suzuki Y. ACS Chem. Biol. 2014; 9: 1242
- 2g Pretze M, Pietzsch D, Mamat C. Molecules 2013; 18: 8618
- 3a Harthong S, Billard T, Langlois BR. Synthesis 2005; 2253
- 3b Smart BE. J. Fluorine Chem. 2001; 109: 3
- 3c Dolbier WR. J. Fluorine Chem. 2005; 126: 157
- 3d Isanbor C, O’Hagan D. J. Fluorine Chem. 2006; 127: 303
- 3e Iwai N, Sakai R, Tsuchida S, Kitazume M, Kitazume T. J. Fluorine Chem. 2009; 130: 434
- 3f Gietter-Burch A, Devannah V, Watson DA. Org. Lett. 2017; 19: 2957
- 4a Fuchibe K, Oki R, Hatta H, Ichikawa J. Chem. Eur. J. 2018; 24: 17932
- 4b Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
- 4c Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
- 5 Hardy MA, Chachignon H, Cahard D. Asian J. Org. Chem. 2019; 8: 1
- 6a Kong WQ, Casimiro M, Merino E, Nevado C. J. Am. Chem. Soc. 2013; 135: 14480
- 6b Zhang CP, Wang ZL, Chen QY, Zhang CT, Gu YC, Xiao JC. Angew. Chem. Int. Ed. 2011; 50: 1896
- 6c Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
- 6d Xiong YP, Wu MY, Zhang XY, Ma CL, Huang L, Zhao LJ, Tan B, Liu XY. Org. Lett. 2014; 16: 1000
- 6e Niedermann K, Welch JM, Koller R, Cvengros J, Santschi N, Battaglia P, Togni A. Tetrahedron 2010; 66: 5753
- 6f Huang YY, Yang X, Chen Z, Verpoort F, Shibata N. Chem. Eur. J. 2015; 21: 8664
- 7 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
- 8 Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 9a Suresh BA, Raghunathan R. Tetrahedron Lett. 2006; 47: 9221
- 9b Ugi I, Meyr R, Fetzer U, Steinbrückner C. Angew Chem. 1959; 71: 386
- 9c Passerini M. Chim. Ital. 1921; 51: 126
- 9d Van Leusen D, Van Leusen AM. Org. React. (N. Y.) 2003; 57: 419
- 9e Strecker A. Ann. Chem. Pharm. 1854; 91: 349
- 9f Hantzsch A. Ber. Dtsch. Chem. Ges. 1881; 14: 1637
- 9g Biginelli P. Ber. Dtsch. Chem. Ges. 1891; 24: 1317
- 10 Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893
- 11a Nair V, Rajesh C, Vinod AU, Bindu S, Sreekanth AR, Mathen JS, Balagopal L. Acc. Chem. Res. 2003; 36: 899
- 11b Jiang B, Rajale T, Wever W, Tu SJ, Li G. Chem. Eur. J. 2010; 5: 2318
- 11c Gao M, He C, Chen HY, Bai RP, Cheng B, Lei AW. Angew. Chem. Int. Ed. 2013; 52: 6958
- 11d Yang S, Wang J, Huo SQ, Cheng LF, Wang M. Polym. Degrad. Stab. 2015; 119: 251
- 11e Yoshida H, Takaki K. Heterocycles 2012; 85: 1333
- 11f Braunschweig H, Constantinidis P, Dellermann T, Ewing WC, Fischer I, Hess M, Knight FR, Rempel A, Schneider C, Ullrich S. Angew. Chem. Int. Ed. 2016; 55: 5606
- 11g Du HY, Rodriguez J, Bugaut X, Constantieux T. Synthesis 2015; 47: 2188
- 12a Mudasir M, Mohammad M, Nasimul H. Eur. J. Med. Chem. 2016; 107: 63
- 12b Khan I, Tantray MA, Alam MS, Hamid H. Eur. J. Med. Chem. 2017; 125: 464
- 12c Robertson H, Hayes JD, Sutherland C. Biochem. Pharmacol. 2018; 147: 77
- 12d Durantini AM, Heredia DA, Durantini JE, Durantini EN. Eur. J. Med. Chem. 2018; 144: 651
- 12e Patel J, Malani M, Andrei G, Balzarini J, Snoeck R, Dholakiya B. Anti-Infective Agents 2014; 12: 104
- 13a Shi W, Wang Y, Zhu YJ, Zhang M, Song LP, Deng HM. Synthesis 2016; 48: 3527
- 13b Wang X, Kang ZP, Yang XY, Zhang M, Song LP, Deng HM. Synthesis 2015; 47: 2073
- 13c Zhou L, Yuan FC, Zhou YD, Duan WW, Zhang M, Deng HM, Song LP. Tetrahedron 2018; 74: 3761
- 13d Jiang YH, Xiao M, Yan CG. RSC Adv. 2016; 6: 35609
- 13e Chen ZP, Wang HB, Wang YQ, Zhu QH, Xie Y, Liu SW. Tetrahedron 2014; 70: 4379
- 13f Mashaly MM, El-Gogary SR, Kosbara TR. J. Heterocycl. Chem. 2014; 51: 1078
- 14 CCDC 1902835 (4a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.