Synlett, Inhaltsverzeichnis Synlett 2019; 30(14): 1708-1712DOI: 10.1055/s-0037-1611873 letter © Georg Thieme Verlag Stuttgart · New York Tetrabutylammonium Iodide-Promoted Acyloxylation–Peroxidation of Alkenes with Carboxylic Acid and tert-Butyl Hydroperoxide Rongxiang Chen a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China eMail: wangkaikaii@163.com , Wei Chen a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China eMail: wangkaikaii@163.com , Yuntao Shen a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China eMail: wangkaikaii@163.com , Zhan-Yong Wang a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China eMail: wangkaikaii@163.com , Wei Dai a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China eMail: wangkaikaii@163.com , Kai-Kai Wang ∗ a College of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 453000, P. R. of China eMail: wangkaikaii@163.com , Lantao Liu∗ b College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. of China eMail: liult05@iccas.ac.cn › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract An efficient synthesis of tert-butyl peroxides through TBAI-promoted acyloxylation–peroxidation of alkenes by using a carboxylic acid and tert-butyl hydroperoxide was developed. The synthetic utility of our method is enhanced by simple manipulations, easily available starting materials, and a wide substrate scope. Key words Key wordstetrabutylammonium iodide - acyloxylation - peroxidation - alkenes - carboxylic acids - butyl hydroperoxide Volltext Referenzen References and Notes 1a Organic Peroxides . Ando W. Wiley; Chichester: 1992 1b Shi E, Liu J, Liu C, Shao Y, Wang H, Lv Y, Ji M, Bao X, Wan X. J. Org. Chem. 2016; 81: 5878 1c Schweitzer-Chaput B, Sud A, Pintér Á, Dehn S, Schulze P, Klussmann M. Angew. Chem. Int. Ed. 2013; 52: 13228 1d Willand-Charnley R, Puffer BW, Dussault PH. J. Am. Chem. Soc. 2014; 136: 5821 1e Cheng J.-K, Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42 1f Chaturvedi D, Goswami A, Pratim Saikia P, Barua NC, Rao PG. Chem. Soc. Rev. 2010; 39: 435 2a Zhou W.-S, Xu X.-X. Acc. Chem. Res. 1994; 27: 211 2b Wu Y. Acc. Chem. Res. 2002; 35: 255 2c Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM, Larson TR, Li Y, Pawson T, Penfield T, Rae AM, Rathbone DA, Reid S, Ross J, Smallwood MF, Segura V, Townsend T, Vyas D, Winzer T, Bowles D. Science 2010; 327: 328 For related reviews, see: 3a Xu K, Hu Y, Zhang S, Zha Z, Wang Z. Chem. Eur. J. 2012; 18: 9793 3b Samanta R, Matcha K, Antonchick AP. Eur. J. Org. Chem. 2013; 5769 3c Wu X.-F, Gong J.-L, Qi X. Org. Biomol. Chem. 2014; 12: 5807 3d Liu D, Lei AW. Chem. Asian J. 2015; 10: 806 3e Rossi R, Lessi M, Manzini C, Marianetti G, Bellina F. Adv. Synth. Catal. 2015; 357: 3777 3f Yuan S, Wang Y, Qiu G, Liu J. Youji Huaxue 2017; 37: 566 3g Qin Y, Zhu LH, Luo SZ. Chem. Rev. 2017; 117: 9433 3h Huang Y, Bao W, Zhu W, Wei W. Youji Huaxue 2018; 38: 752 3i Luo JF, Wei WT. Adv. Synth. Catal. 2018; 360: 2076 3j Chen R, Chen J, Zhang J, Wan X. Chem. Rec. 2018; 18: 1292 3k Yan Y, Cui C, Li Z. Youji Huaxue 2018; 38: 2501 4 Wei W, Zhang C, Xu Y, Wan X. Chem. Commun. 2011; 47: 10827 For related reviews, see: 5a Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413 5b Xu J, Song Q. Youji Huaxue 2016; 36: 1151 5c Wu K, Liang Y, Jiao N. Molecules 2016; 21: 352 5d Lan X.-W, Wang N.-X, Xing Y. Eur. J. Org. Chem. 2017; 5821 5e Zhang J.-S, Liu L, Chen T, Han L.-B. Chem. Asian J. 2018; 13: 2277 5f Koike T, Akita M. Chem 2018; 4: 409 For recent papers, see: 5g Barker TJ, Boge DL. J. Am. Chem. Soc. 2012; 134: 13588 5h Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 7031 5i Zhang C, Li Z, Zhu L, Yu L, Wang Z, Li C. J. Am. Chem. Soc. 2013; 135: 14082 5j Pan X, Boussonnière A, Curran DP. J. Am. Chem. Soc. 2013; 135: 14433 5k Wang F, Qi X, Liang Z, Chen P, Liu G. Angew. Chem. Int. Ed. 2014; 53: 1881 5l Cheng B, Lu P, Zhang H, Cheng X, Lu Z. J. Am. Chem. Soc. 2017; 139: 9439 5m Jang WJ, Song SM, Moon JH, Lee JY, Yun J. J. Am. Chem. Soc. 2017; 139: 13660 5n Peng J, Docherty JH, Dominey AP, Thomas SP. Chem. Commun. 2017; 53: 4726 5o Takaya J, Miyama K, Zhua C, Iwasawa N. Chem. Commun. 2017; 53: 3982 5p Beniazza R, Douarre M, Lastécouèresa D, Vincent J.-M. Chem. Commun. 2017; 53: 3547 5q Li D, Mao T, Huang J, Zhu Q. Chem. Commun. 2017; 53: 3450 5r Magagnano G, Gualandi A, Marchini M, Mengozzi L, Ceroni P, Cozzi PG. Chem. Commun. 2017; 53: 1591 5s Zhang Y, Wong ZR, Wu X, Lauw SJ. L, Huang X, Webster RD, Chi YR. Chem. Commun. 2017; 53: 184 5t Li H, Shan C, Tung C.-H, Xu Z. Chem. Sci. 2017; 8: 2610 6a Liu K, Li Y, Zheng X, Liu W, Li Z. Tetrahedron 2012; 68: 10333 6b Schweitzer-Chaput B, Demaerel J, Engler H, Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737 6c Banerjee A, Santra SK, Khatun N, Ali W, Patel BK. Chem. Commun. 2015; 51: 15422 6d Yang W.-C, Weng S.-S, Ramasamy A, Rajeshwaren G, Liao Y.-Y, Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385 6e Jiang J, Liu J, Yang L, Shao Y, Cheng J, Bao X, Wan X. Chem. Commun. 2015; 51: 14728 6f Zhao L, Wang Y, Ma Z, Wang Y. Inorg. Chem. 2017; 56: 8166 6g Lan Y, Yang C, Xu Y.-H, Loh T.-P. Org. Chem. Front. 2017; 4: 1411 6h Zhang H.-Y, Ge C, Zhao J, Zhang Y. Org. Lett. 2017; 19: 5260 6i Lan Y, Chang X.-H, Fan P, Shan C.-C, Liu Z.-B, Loh T.-P, Xu Y.-H. ACS Catal. 2017; 7: 7120 6j Lu S, Qi L, Li Z. Asian J. Org. Chem. 2017; 6: 313 6k Chen Y, Chen Y, Lu S, Li Z. Org. Chem. Front. 2018; 5: 972 6l Xu R, Li Z. Tetrahedron Lett. 2018; 59: 3942 6m Lu S, Tian T, Xu R, Li Z. Tetrahedron Lett. 2018; 59: 2604 6n Chen Y, Tian T, Li Z. Org. Chem. Front. 2019; 6: 632 6o Chen Y, Ma Y, Li L, Jiang H, Li Z. Org. Lett. 2019; 21: 1480 6p Chen Y, Li L, Ma Y, Li Z. J. Org. Chem. 2019; 84: 5328 7 Liu W, Li Y, Liu K, Li Z. J. Am. Chem. Soc. 2011; 133: 10756 8 Gao X, Yang H, Cheng C, Jia Q, Gao F, Chen H, Cai Q, Wang C. Green Chem. 2018; 20: 2225 9a Singh C, Chaudhary S, Puri SK. Bioorg. Med. Chem. Lett. 2008; 18: 1436 9b Dechert A.-MR, MacNamara JP, Breevoort SR, Hildebrandt ER, Hembree NW, Rea AC, McLain DE, Porter SB, Schmidt WK, Dore TM. Bioorg. Med. Chem. 2010; 18: 6230 10 CCDC 1906436 contains the supplementary crystallographic data for compound 3g. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 11 Shi E, Shao Y, Chen S, Hu H, Liu Z, Zhang J, Wan X. Org. Lett. 2012; 14: 3384 12a Chen L, Shi E, Liu Z, Chen S, Wei W, Li H, Xu K, Wan X. Chem. Eur. J. 2011; 17: 4085 12b Liu Z, Zhang J, Chen S, Shi E, Xu Y, Wan X. Angew. Chem. Int. Ed. 2012; 51: 3231 13 1-[(tert-Butylperoxy)methyl]-2-(methoxycarbonyl)ethyl 4-tert-Butylbenzoate (3a); Typical Procedure A test tube was charged with TBAI (36.9 mg, 0.1 mmol) and 4-tert-butylbenzoic acid (35.6 mg, 0.2 mmol). DMSO (1.0 mL), methyl acrylate (2a; 1.6 mmol), and a 70% aq solution of TBHP (180.2 mg, 1.4 mmol) were added from a syringe, and the mixture was stirred at 80 °C for 12 h under air. The reaction was then quenched with sat. aq Na2SO3 to remove residual TBHP. Evaporation of the solvent followed by flash column chromatography (silica gel, PE–EtOAc) gave a colorless liquid; yield: 53.5 mg (76%). 1H NMR (400 MHz, CDCl3): δ = 8.09–8.02 (m, 2 H), 7.51–7.43 (m, 2 H), 5.58 (dd, J = 5.9, 3.5 Hz, 1 H), 4.42 (qd, J = 13.0, 4.7 Hz, 2 H), 3.77 (d, J = 2.5 Hz, 3 H), 1.34 (s, 9 H), 1.24 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 168.6, 165.8, 157.1, 129.9, 126.5, 125.4, 80.8, 73.4, 70.7, 52.5, 35.1, 31.1, 26.2. HRMS (ESI-TOF): m/z [M + Na]+ calcd for C19H28NaO6: 375.1778; found: 375.1770. Zusatzmaterial Zusatzmaterial Supporting Information