Subscribe to RSS
DOI: 10.1055/s-0037-1611882
Medicinally Relevant Modification of the Isoquinoline-1,3-dione Scaffold via Metal-Free Arylation and Fluorination of Diazo Homophthalimides in Brønsted Acids
Synthesis of diazo homophthalimides was supported by the Russian Science Foundation Grant No. 19-75-30008. Electrophilic reactions of diazo compounds with arenes and fluorination reactions were supported by the Russian Science Foundation Grant No. 18-13-00008.Publication History
Received: 16 May 2019
Accepted after revision: 13 June 2019
Publication Date:
08 July 2019 (online)

Abstract
Protonation of 4-diazoisoquinoline-1,3(2H,4H)-diones in Brønsted acids gives rise to diazonium cations that can be trapped with arenes to give 4-arylisoquinoline-1,3(2H,4H)-diones (homophthalimides). This provides a new, metal-free approach to 4-aryltetrahydroisoquinolines (obtainable from respective homophthalimides by reduction). Similarly, a fluorine atom can be introduced by trapping the diazonium cation with HF. This led to the preparation of the first examples of 4-monofluoro-substituted isoquinoline-1,3-diones (as well as their 4-bromo-4-fluoro and 4-chloro-4-fluoro variants), important carboxylic acid isosteres on their own and precursors of useful 4-fluorotetrahydroisoquinoline building blocks.
Key words
homophthalimides - diazo compounds - arylation - Friedel–Crafts reaction - monofluorination - fluorohalogenation - Brønsted acids - isoquinoline-1,3(2H,4H)-dioneSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611882. Copies of 1H and 13C NMR spectra and crystallographic data are provided.
- Supporting Information
-
References
- 1a Chen Y.-L, Tang J, Kesler MJ, Sham YY, Vince R, Geraghty RJ, Wang Z. Bioorg. Med. Chem. 2012; 20: 467
- 1b Mayer SC, Banker AL, Boschelli F, Di L, Johnson M, Kenny CH, Krishnamurthy G, Kutterer K, Moy F, Petusky S, Ravi M, Tkach D, Tsou HR, Xu W. Bioorg. Med. Chem. Lett. 2008; 18: 3641
- 1c Billamboz M, Bailly F, Lion C, Touati N, Vezin H, Calmels C, Andréola ML, Christ F, Debyser Z, Cotelle P. J. Med. Chem. 2011; 54: 1812
- 1d Billamboz M, Bailly F, Barreca ML, De Luca L, Mouscadet JF, Calmels C, Andréola ML, Witvrouw M, Christ F, Debyser Z, Cotelle P. J. Med. Chem. 2008; 51: 7717
- 1e Vernekar SK. V, Liu Z, Nagy E, Miller L, Kirby KA, Wilson DJ, Kankanala J, Sarafianos ST, Parniak MA, Wang Z. J. Med. Chem. 2015; 58: 651
- 1f Ontoria JM, Rydberg EH, Marco SD, Tomei L, Attenni B, Malancona S, Hernando JI. M, Gennari N, Koch U, Narjes F, Rowley M, Summa V, Carroll SS, Olsen DB, Francesco RD, Altamura S, Migliaccio G, Carfì A. J. Med. Chem. 2009; 52: 5217
- 1g Chen Y.-H, Zhang Y.-H, Zhang H.-J, Liu D.-Z, Gu M, Li J.-Y, Wu F, Zhu X.-Z, Li J, Nan F.-J. J. Med. Chem. 2006; 49: 1613
- 1h Kankanala J, Marchand C, Abdelmalak M, Aihara H, Pommier Y, Wang Z. J. Med. Chem. 2016; 59: 2734
- 2 Evans BE, Rittle KE, Bock MG, DiPardo RM, Freidinger RM, Whitter WL, Lundell GF, Veber DF, Anderson PS, Chang RS. L, Lotti VJ, Cerino DJ, Chen TB, Kling PJ, Kunkel KA, Springer JP, Hirshfield J. J. Med. Chem. 1988; 31: 2235
- 3 Kantin G, Dar’in D, Krasavin M. Eur. J. Org. Chem. 2018; 4857
- 4 Guranova N, Dar’in D, Kantin G, Novikov A, Bakulina O, Krasavin M. J. Org. Chem. 2019; 84: 4534
- 5 Flahive E, Ewanicki B, Yu S, Higginson PD, Sach NW, Morao I. QSAR Comb. Sci. 2007; 26: 679
- 6a Zhai C, Xing D, Jing C, Zhou J, Wang C, Wang D, Hu W. Org. Lett. 2014; 16: 2934
- 6b Satumov ET, Medvedev JJ, Nilov DI, Sandzhieva MA, Boyarskaya IA, Nikolaev VA, Vasilyev AV. Tetrahedron 2016; 72: 4835
- 7 Lowe JA, Newman ME. Synth. Commun. 1987; 17: 803
- 8 Yang Y, Li Y, Cheng C, Yang G, Zhang J, Zhang Y, Zhao Y, Zhang L, Li C, Tang L. J. Org. Chem. 2018; 83: 3348
- 9 Brossi A, Grethe G, Teitel S, Wildman WC, Bailey DT. J. Org. Chem. 1970; 35: 1100
- 10 Cueva JP, Giorgioni G, Grubbs RA, Chemel BR, Watts VJ, Nichols DE. J. Med. Chem. 2006; 49: 6848
- 11 Zara-Kaczian E, Gyorgy L, Deak G, Seregi A, Doda M. J. Med. Chem. 1986; 29: 1189
- 12 Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
- 13 Lassalas P, Gay B, Lasfargeas C, James MJ, Tran V, Vijayendran KG, Brunden KR, Kozlowski MC, Thomas CJ, Smith AB, Huryn DM, Ballatore C. J. Med. Chem. 2016; 59: 3183
- 14 Pan Y, Holmes CP, Tumely D. J. Org. Chem. 2005; 70: 4897
- 15 Emer E, Twilton J, Tredwell M, Calderwood S, Collier TL, Liegault B, Taillefer M, Gouverneur V. Org. Lett. 2014; 16: 6004
- 16 Olah GA, Welch JT, Vankar YD, Nojima M, Kerekes I, Olah JA. J. Org. Chem. 1979; 44: 3872
- 17a Fan J, Kalisiak J, Lui RM, Mali VR, Mcmahon JP, Powers JP, Tanaka H, Zeng Y, Zhang P. WO 2016187393 2016 ; Chem. Abstr. 2016, 166, 28225.
- 17b Roth GJ, Fleck M, Haebel PW, Heimann A, Heine N. US 20160075657, 2016 ; Chem. Abstr. 2016, 164, 416513.
- 18 CCDC 1910818 – (7a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 19 Singh KN, Singh P, Singh P, Deol YS. Org. Lett. 2012; 14: 2202