Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(23): 4408-4416
DOI: 10.1055/s-0037-1611886
DOI: 10.1055/s-0037-1611886
special topic
Willgerodt-Type Dichloro(aryl)-λ3-Iodanes: A Structural Study
We acknowledge generous financial support from Westfälische Wilhelms-Universität Münster.Further Information
Publication History
Received: 04 June 2019
Accepted after revision: 25 June 2019
Publication Date:
09 July 2019 (online)
Published as part of the Special Topic Halogenation methods (with a view towards radioimaging applications)
Abstract
Crystallographic structural analysis of four electronically diverse Willgerodt-type reagents is disclosed together with a solution-phase NMR analysis. These data reveal a plethora of intermolecular non-covalent interactions and confirm the expected T-shape geometry of the reagents. In all cases the I–Cl bonds are orthogonal to the plane of the aryl ring. This study provides important structural insights into this venerable class of dichlorination reagent and has implications for crystal engineering.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611886.
- Supporting Information
-
References
- 1 Willgerodt C. J. Prakt. Chem. 1886; 33: 154
- 3a Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
- 3b Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 3c Arnold AM, Ulmer A, Gulder T. Chem. Eur. J. 2016; 22: 8728
- 3d Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 3e Li X, Chen P, Liu G. Beilstein J. Org. Chem. 2018; 14: 1813
- 3f Flores A, Cots E, Bergès J, Muñiz K. Adv. Synth. Catal. 2019; 361: 2
- 4 Garvey BS. Jr, Halley LF, Allen CF. H. J. Am. Chem. Soc. 1937; 59: 1827
- 5 Cotter JL, Andrew LJ, Keefer RM. J. Am. Chem. Soc. 1962; 84: 793
- 6a Molnár IG, Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
- 6b Molnár IG, Thiehoff C, Holland MC, Gilmour R. ACS Catal. 2016; 6: 7167
- 6c Scheidt F, Thiehoff C, Yilmaz G, Meyer S, Daniliuc CG, Kehr G, Gilmour R. Beilstein J. Org. Chem. 2018; 14: 1021
- 6d Scheidt F, Schäfer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
- 6e Scheidt F, Neufeld J, Schäfer M, Thiehoff C, Gilmour R. Org. Lett. 2018; 94: 8073
- 7 Bloomfield GF. J. Chem. Soc. 1944; 114
- 8a Breslow R, Dale JA, Kalicky P, Liu SY, Washburn WN. J. Am. Chem. Soc. 1972; 94: 3276
- 8b Snider BB, Corcoran RJ, Breslow R. J. Am. Chem. Soc. 1975; 97: 6791
- 9a Shellhamer DF, Ragains ML, Gipe BT, Heasley VL, Heasley GE. J. Fluorine Chem. 1982; 20: 13
- 9b Michinori O, Jiro T, Yoriko S, Kazuhiro M, Nobuo N. Bull. Chem. Soc. Jpn. 1988; 61: 4303
- 9c Garve LK. B, Barkawitz P, Jones PG, Werz DB. Org. Lett. 2014; 16: 5804
- 9d Kaiho T, Zhdankin VV. Industrial Applications . In Patai’s Chemistry of Functional Groups . Rappoport Z. John Wiley & Sons; New York: 2018: 1-13
- 10 Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J. Am. Chem. Soc. 2011; 133: 8134
- 11a Podgorsek A, Jurisch M, Stavber S, Zupan M, Iskra J, Gladysz JA. J. Org. Chem. 2009; 74: 3133
- 11b Thorat PB, Bhong BY, Karade NN. Synlett 2013; 24: 2061
- 12a Kitamura T, Tazawa Y, Morshed MH, Kobayashi S. Synthesis 2012; 44: 1159
- 12b Granados A, Jia Z, del Olmo M, Vallribera A. Eur. J. Org. Chem. 2019; 2812
- 13a Archer EM, van Schalkwyk TG. D. Acta Crystallogr. 1953; 6: 88
- 13b Carey JV, Chaloner PA, Hitchcock PB, Neugebauer T, Seddon KR. J. Chem. Res. 1996; 2031
- 13c Montanari V, DesMarteau DD, Pennington WT. J. Mol. Struct. 2000; 550-551: 337
- 14a Mishra AK, Olmstead MM, Ellison JJ, Power PP. Inorg. Chem. 1995; 34: 3210
- 14b Protasiewicz JD. J. Chem. Soc., Chem. Commun. 1995; 1115
- 14c Minkwitz R, Berkei M. Inorg. Chem. 1999; 38: 5041
- 14d Nikiforov VA, Karavan VS, Miltsov SA, Selivanov SI, Kolehmainen E, Wegelius E, Nissinen M. ARKIVOC 2003; (vi): 191
- 14e Bekoe DA, Hulme R. Nature 1956; ; this article reports the structure of p-ClC6H4ICl2 but without including bond distances or angles 177: 1230
- 15 Zhao X.-F, Zhang C. Synthesis 2007; 551
- 16 Wu Y, Shafir A. NMR of Hypervalent Iodine Compounds . In Patai’s Chemistry of Functional Groups . Rappoport Z. John Wiley & Sons; New York: 2018
- 17 Viesser RV, Ducati LC, Tormena CF, Autschbach J. Phys. Chem. Chem. Phys. 2018; 20: 11247
- 18 Katritzky AR, Gallos JK, Dupont Durst H. Magn. Reson. Chem. 1989; 27: 815
- 19 Bondi A. J. Phys. Chem. 1964; 68: 441
- 20 Tyson EL, Ament MS, Yoon TP. J. Org. Chem. 2013; 78: 2046
- 21a Singh AK, Kim M.-G, Lee H.-J, Singh R, Cho SH, Kim D.-P. Adv. Synth. Catal. 2018; 360: 2032
- 21b Qin Y, Wei W, Luo M. Synlett 2007; 2410
- 22 Powers DC, Ritter T. Nat. Chem. 2009; 1: 302
- 23 Motherwell WB, Greaney MF, Tocher DA. J. Chem. Soc., Perkin Trans. 1 2002; 2809
- 24 Ranganathan S, Ranganathan D, Ramachandran PV. Tetrahedron 1984; 40: 3145
For excellent reviews on hypervalent iodine difunctionalisation, see:
For selected examples, see:
For examples, see: