Synthesis 2019; 51(19): 3611-3616
DOI: 10.1055/s-0037-1611889
paper
© Georg Thieme Verlag Stuttgart · New York

Large-Scale Synthesis of Aniline Trimers in Different Oxidation States

Gerardo Yepez
a   Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
,
Anurag Noonikara Poyil
a   Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
,
Alejandro Bugarin
a   Department of Chemistry & Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
b   Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, FL 33965, USA   Email: abugarin@fgcu.edu
› Author Affiliations
The authors wish to thank the University of Texas at Arlington and Florida Gulf Coast University for partial support of this work. We also thankfully acknowledge the American Chemical Society Petroleum Research Fund (grant No. 58261-ND1) for financial support.
Further Information

Publication History

Received: 16 May 2019

Accepted after revision: 22 June 2019

Publication Date:
10 July 2019 (online)


Abstract

Polyanilines are an important class of organic compounds, due to their utility in a large variety of applications. In contrast, oligo­anilines have been employed far more sporadically, in large part reflecting an absence of refined synthetic approaches. Herein, we report, for the first time, a relatively large-scale strategy to generate highly pure aniline trimers at different oxidation states with excellent yields (90–97%).

Supporting Information

 
  • References

  • 1 Letheby H. J. Chem. Soc. 1862; 15: 161
  • 2 MacDiarmid AG, Epstein AJ. Faraday Discuss. Chem. Soc. 1989; 88: 317
  • 3 MacDiarmid AG. Angew. Chem. Int. Ed. 2001; 40: 2581
  • 4 Green AG, Woodhead AE. J. Chem. Soc., Trans. 1910; 97: 2388
  • 5 Chang KC, Lu HI, Peng CW, Lai MC, Hsu SC, Hsu MH, Tsai YK, Chang CH, Hung WI, Wei Y, Yeh JM. ACS Appl. Mater. Interfaces 2013; 5: 1460
  • 6 Yang T.-I, Peng C.-W, Lin YL, Weng C.-J, Edgington G, Mylonakis A, Huang T.-C, Hsu C.-H, Yeh J.-M, Wei Y. J. Mater. Chem. 2012; 22: 15845
  • 7 Lu H, Zhang S, Li W, Cui Y, Yang T. ACS Appl. Mater. Interfaces 2017; 9: 4034
  • 8 Huang H.-Y, Huang T.-C, Yeh T.-C, Tsai C.-Y, Lai C.-L, Tsai M.-H, Yeh J.-M, Chou Y.-C. Polymer 2011; 52: 2391
  • 9 Lu W, Meng XS, Wang ZY. J. Polym. Sci., Part A: Polym. Chem. 1999; 37: 4295
  • 10 Wang ZY, Yang C, Gao JP, Lin J, Meng XS, Wei Y, Li S. Macromolecules 1998; 31: 2702
  • 11 Yildiz HB, Tel-Vered R, Willner I. Adv. Funct. Mater. 2008; 18: 3497
  • 12 Guo Y, Li M, Mylonakis A, Han J, MacDiarmid AG, Chen X, Lelkes PI, Wei Y. Biomacromolecules 2007; 8: 3025
  • 13 Xie M, Wang L, Ge J, Guo B, Ma PX. ACS Appl. Mater. Interfaces 2015; 7: 6772
  • 14 Hirao T, Fukuhara S. J. Org. Chem. 1998; 63: 7534
  • 15 Xu C, Huang Y, Yepez G, Wei Z, Liu F, Bugarin A, Tang L, Hong Y. Sci. Rep. 2016; 6: 34451
  • 16 Xu C, Yepez G, Wei Z, Liu F, Bugarin A, Hong Y. J. Biomed. Mater. Res., Part A 2016; 104: 2305
  • 17 Honzl J, Ulbert K, Hádek V, Tlustáková M. Chem. Commun. 1965; 440
  • 18 Gebert PH, Batich CD, Tanner DB, Herr SL. Synth. Met. 1989; 29: 371
  • 19 Brown CL, Muderawan IW, Young DJ. Synthesis 2003; 2511
  • 20 Różalska I, Kułyk P, Kulszewicz-Bajer I. New J. Chem. 2004; 28: 1235
  • 21 Rozalska I, Kurylek M, Franaszek M, Kulszewicz-Bajer I. Mol. Cryst. Liq. Cryst. 2004; 415: 105
  • 22 Jetti V, Pagadala R, Meshram JS, Chopde HN, Malladi L. J. Heterocycl. Chem. 2013; 50: E160
  • 23 Wei Y, Yang C, Wei G, Feng G. Synth. Met. 1997; 84: 289
  • 24 Wei Y, Yang C, Ding T. Tetrahedron Lett. 1996; 37: 731
  • 25 Durgaryan AA, Arakelyan RA, Durgaryan NA, Martikyan NS. Russ. J. Org. Chem. 2017; 53: 955