Subscribe to RSS
DOI: 10.1055/s-0037-1611915
Cyclopropanation Reactions of Semi-stabilized and Non-stabilized Diazo Compounds
This work was supported by the Natural Science and Engineering Research Council of Canada (NSERC) under the CREATE Training Program in Continuous Flow Science and the Discovery Grant Program RGPIN-06438, the Canada Foundation for Innovation Leaders Opportunity Funds 227346, the Canada Research Chair Program CRC-227346, the FRQNT Centre in Green Chemistry and Catalysis (CGCC) Strategic Cluster RS-171310 and Université de Montréal. E. M. D. A. is grateful to Université de Montréal for postgraduate scholarships.Publication History
Received: 26 June 2019
Accepted after revision: 06 August 2019
Publication Date:
23 September 2019 (online)
Abstract
The cyclopropane ring is present in a large number of bioactive molecules as its incorporation often greatly alters their physiochemical properties. The synthesis of such motif is therefore of interest. Diazo compounds are versatile and powerful reagents that can be used in a broad range of reactions, including cyclopropanation processes. However, in case of unstable diazo reagents such as the donor-substituted variants, their inherent toxicity and instability have hampered their effective synthesis and utilization. Herein, we report the recent advances devoted to the safe and facile production of these potentially hazardous species and their subsequent application in cyclopropanation reactions, allowing the synthesis of more complex cyclopropylated motifs.
1 Introduction
2 Halomethylmetal-Mediated Cyclopropanations
3 Cyclopropanations through Metallic- or Free Carbenes
3.1 Transition-Metal-Catalyzed Decomposition of Diazo Compounds
3.2 Metal-Free Decomposition of Diazo Compounds
4 Michael Induced Ring Closure (MIRC) Reactions
4.1 Sulfur Ylides
4.2 1,3-Dipolar Cycloadditions
5 Conclusion
-
References
- 1a Wessjohann L, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
- 1b Talele TT. J. Med. Chem. 2016; 59: 8712
- 2 Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 3 Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
- 4a Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 997
- 4b Pellissier H. Tetrahedron 2008; 64: 7041
- 4c Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
- 4d Roy A, Goswami SP, Sarkar A. Synth. Commun. 2018; 48: 2003
- 5a Regitz M, Maas G. Diazo Compounds . Academic Press; New York: 1986: 3-64
- 5b Mix KA, Aronoff MR, Raines RT. ACS Chem. Biol. 2016; 11: 3233
- 6a Singh VK, DattaGupta A, Sekar G. Synthesis 1997; 137
- 6b Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
- 7 Doyle MP, McKervey MA, Tao Y. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides. Wiley-VCH; Weinheim: 1998: 1-65
- 8 Ford A, Miel H, Ring A, Slattery CN, Maguire AR, McKervey MA. Chem. Rev. 2015; 115: 9981
- 9a Morandi B, Carreira EM. Science 2012; 335: 1471
- 9b Maurya RA, Park CP, Lee JH, Kim D.-P. Angew. Chem. Int. Ed. 2011; 50: 5952
- 9c Rossi E, Woehl P, Maggini M. Org. Process Res. Dev. 2012; 16: 1146
- 9d Mastronardi F, Gutmann B, Kappe CO. Org. Lett. 2013; 15: 5590
- 9e Dallinger D, Pinho VD, Gutmann B, Kappe CO. J. Org. Chem. 2016; 81: 5814
- 9f Lehmann H. Green Chem. 2017; 19: 1449
- 9g Dallinger D, Kappe CO. Nat. Protoc. 2017; 12: 2138
- 9h Audubert C, Gamboa Marin OJ, Lebel H. Angew. Chem. Int. Ed. 2017; 56: 6294
- 10a Lewinn EB. Am. J. Med. Sci. 1949; 218: 556
- 10b Schoental R. Nature 1960; 188: 420
- 10c Lewis CE. J. Occup. Med. 1964; 6: 91
- 10d Bray PA, Sokas RK. J. Occup. Environ. Med. 2015; 57: 15
- 11a de Boer TJ, Backer HJ. Org. Synth. 1956; 36: 16
- 11b Sammakia T. Encyclopedia of Reagents for Organic Synthesis . Wiley; Hoboken: 2001: 1-7
- 11c Gutsche CD. Org. React. 2004; 364
- 12 Bug T, Hartnagel M, Schlierf C, Mayr H. Chem. Eur. J. 2003; 9: 4068
- 13 Charette AB, Beauchemin A. Org. React. 2001; 58: 1
- 14a Zhou Y.-Y, Uyeda C. Angew. Chem. Int. Ed. 2016; 55: 3171
- 14b Werth J, Uyeda C. Chem. Sci. 2018; 9: 1604
- 14c Werth J, Uyeda C. Angew. Chem. Int. Ed. 2018; 57: 13902
- 15 Simmons HE, Smith RD. J. Am. Chem. Soc. 1958; 80: 5323
- 16a Furukawa J, Kawabata N, Nishimura J. Tetrahedron Lett. 1966; 3353
- 16b Furukawa J, Kawabata N, Nishimura J. Tetrahedron 1968; 24: 53
- 17a Charette AB, Juteau H. J. Am. Chem. Soc. 1994; 116: 2651
- 17b Charette AB, Juteau H, Lebel H, Molinaro C. J. Am. Chem. Soc. 1998; 120: 11943
- 18a Beaulieu L.-PB, Schneider JF, Charette AB. J. Am. Chem. Soc. 2013; 135: 7819
- 18b Navuluri C, Charette AB. Org. Lett. 2015; 17: 4288
- 19 Beaulieu L.-PB, Zimmer LE, Gagnon A, Charette AB. Chem. Eur. J. 2012; 18: 14784
- 20 Taillemaud S, Diercxsens N, Gagnon A, Charette AB. Angew. Chem. Int. Ed. 2015; 54: 14108
- 21a Beaulieu L.-PB, Zimmer LE, Charette AB. Chem. Eur. J. 2009; 15: 11829
- 21b Allouche EM. D, Taillemaud S, Charette AB. Chem. Commun. 2017; 53: 9606
- 22a Kim HY, Lurain AE, García-García P, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2005; 127: 13138
- 22b Kim HY, Salvi L, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2009; 131: 954
- 22c For the synthesis of stereoenriched dihydrocyclopropanes using the same strategy, see ref 22a.
- 23a For the use of alkyl-substituted carbenoids in asymmetric Simmons–Smith reaction, see: Charette AB, Lemay J. Angew. Chem. Int. Ed. Engl. 1997; 36: 1090
- 23b For the use of alkyl-substituted carbenoids in non-asymmetric Simmons–Smith reaction, see: Charette AB, Wilb N. Synlett 2002; 176
- 24a Wittig G, Schwarzenbach K. Angew. Chem. 1959; 71: 652
- 24b Wittig G, Schwarzenbach K. Justus Liebigs Ann. Chem. 1961; 650: 1
- 24c Wittig G, Wingler F. Justus Liebigs Ann. Chem. 1962; 656: 18
- 24d Wittig G, Jautelat M. Justus Liebigs Ann. Chem. 1967; 702: 24
- 24e Goh SH, Closs LE, Closs GL. J. Org. Chem. 1969; 34: 25
- 24f Altman LJ, Kowerski RC, Rilling HC. J. Am. Chem. Soc. 1971; 93: 1782
- 24g Altman LJ, Kowerski RC, Laungani DR. J. Am. Chem. Soc. 1978; 100: 6174
- 25 Goudreau SR, Charette AB. J. Am. Chem. Soc. 2009; 131: 15633
- 26 For seminal work on Simmons–Smith reaction using a catalytic amount of zinc, see ref 24e.
- 27 Lévesque E, Goudreau SR, Charette AB. Org. Lett. 2014; 16: 1490
- 28a For a recent review on flow chemistry advantages, see: Plutschack MB, Pieber B, Gillmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 28b Deadman BJ, Collins SG, Maguire AR. Chem. Eur. J. 2015; 21: 2298
- 28c Muller ST. R, Wirth T. ChemSusChem 2015; 8: 245
- 28d Fitzpatrick DE, Battilocchio C, Ley SV. ACS Cent. Sci. 2016; 2: 131
- 28e Movsisyan M, Delbeke EI. P, Berton JK. E. T, Battilocchio C, Ley SV, Stevens CV. Chem. Soc. Rev. 2016; 45: 4892
- 28f Hock KJ, Koenigs RM. Chem. Eur. J. 2018; 24: 10571
- 29 Bamford WR, Stevens TS. J. Chem. Soc. 1952; 4735
- 30 Dudman CC, Reese CB. Synthesis 1982; 419
- 31 Lévesque E, Laporte ST, Charette AB. Angew. Chem. Int. Ed. 2017; 56: 837
- 33 Previous work showed that donor-substituted diazo compounds are generally unsuitable for catalytic metal carbene transformations because these carbenes readily undergo 1,2-hydrogen shifts to give alkenes, see: Doyle MP, High KG, Oon HS.-M, Osborn AK. Tetrahedron Lett. 1989; 30: 3049
- 34 Aggarwal VK, de Vicente J, Bonnert RV. Org. Lett. 2001; 3: 2785
- 36 Electron-rich diazo compounds, such as p-methoxy substituted aryldiazomethane, are unstable to the point that they decompose at –80 °C, see: Closs GL, Moss RA. J. Am. Chem. Soc. 1964; 86: 4042
- 37a Fulton JR, Aggarwal VK, de Vicente J. Eur. J. Org. Chem. 2005; 1479
- 37b Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
- 37c Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
- 37d Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
- 37e Xia Y, Zhang Y, Wang J. ACS Catal. 2013; 3: 2586
- 37f Arunprasath D, Bala BD, Sekar G. Adv. Synth. Catal. 2019; 361: 1172
- 38 Aggarwal VK, Alonso E, Hynd G, Lydon KM, Palmer MJ, Porcelloni M, Studley JR. Angew. Chem. Int. Ed. 2001; 40: 1430
- 39 Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcellini M. Angew. Chem. Int. Ed. 2001; 40: 1433
- 40 Zhang J.-L, Chan PW. H, Che C.-M. Tetrahedron Lett. 2003; 44: 8733
- 41 Adams LA, Aggarwal VK, Bonnert RV, Bressel B, Cox RJ, Shepherd J, de Vicente J, Walter M, Whittingham WG, Winn CL. J. Org. Chem. 2003; 68: 9433
- 42 Chirila A, Das BG, Paul ND, de Bruin B. ChemCatChem 2017; 9: 1413
- 43 Wang Y, Wen X, Cui X, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2017; 139: 1049
- 44a Dzik WI, Xu X, Zhang XP, Reek JN. H, de Bruin B. J. Am. Chem. Soc. 2010; 132: 10891
- 44b Belof JL, Cioce CR, Xu X, Zhang XP, Space B, Woodcock HL. Organometallics 2011; 30: 2739
- 44c Lu HJ, Dzik WI, Xu X, Wojtas L, de Bruin B, Zhang XP. J. Am. Chem. Soc. 2011; 133: 8518
- 45 Roy S, Das SK, Chattopadhyay B. Angew. Chem. 2018; 130: 2260
- 46a Tan H, Houpis I, Liu R, Wang Y, Chen Z. Org. Process Res. Dev. 2015; 19: 1044
- 46b Liu T, Ma J, Chao D, Zhang P, Liu Q, Shi L, Zhang Z, Zhang G. Chem. Commun. 2015; 51: 12775
- 47 Liu Z, Li Q, Liao P, Bi X. Chem. Eur. J. 2017; 23: 4756
- 48 Allouche EM. D, Al-Saleh A, Charette AB. Chem. Commun. 2018; 54: 13256
- 49 Liu Z, Zhang X, Zanoni G, Bi X. Org. Lett. 2017; 19: 6646
- 50 Jiang H, Fu W, Chen H. Chem. Eur. J. 2012; 18: 11884
- 51 Chen P, Zhu C, Zhu R, Lin Z, Wu W, Jiang H. Org. Biomol. Chem. 2017; 15: 1228
- 52a Lunn G, Banks BJ, Crook R, Feeder N, Pettman A, Sabnis Y. Bioorg. Med. Chem. Lett. 2011; 21: 4608
- 52b McHardy SF, Heck SD, Guediche S, Kalman M, Allen MP, Tu M, Bryce DK, Schmidt AW, Vanase-Frawley M, Callegari E, Doran S, Grahame NJ, Mclean S, Liras S. MedChemComm 2011; 2: 1001
- 53 Reddy AR, Hao F, Wu K, Zhou C.-Y, Che C.-M. Angew. Chem. Int. Ed. 2016; 55: 1810
- 54 Schroeder W, Katz L. J. Org. Chem. 1954; 19: 718
- 55 Smith LI, Howard KL. Org. Synth. 1944; 24: 53
- 56 Kumar S, Murray RW. J. Am. Chem. Soc. 1984; 106: 1040
- 57a Javed MI, Brewer M. Org. Lett. 2007; 9: 1789
- 57b Perusquía-Hernández C, Lara-Issasi GR, Frontana-Uribe BA, Cuevas-Yañez E. Tetrahedron Lett. 2013; 54: 3302
- 58 Lapatsanis L, Milias G, Paraskewas S. Synthesis 1985; 513
- 59 Barton DH. R, Jaszberenyi JC, Liu W, Shinada T. Tetrahedron 1996; 52: 14673
- 60 Liu H, Wei Y, Cai C. New J. Chem. 2016; 40: 674
- 61 Barluenga J, Quinones N, Tomás-Gamasa M, Cabal M.-P. Eur. J. Org. Chem. 2012; 2312
- 62 Cyr P, Côté-Raiche A, Bronner SM. Org. Lett. 2016; 18: 6448
- 63 Krollpfeiffer F, Hartmann H. Chem. Ber. 1950; 83: 90
- 64a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1962; 84: 867
- 64b Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
- 64c Corey EJ, Jautelat M. J. Am. Chem. Soc. 1967; 89: 3912
- 65a Aggarwal VK, Smith HW, Jones RV. H, Fieldhouse R. Chem. Commun. 1997; 1785
- 65b Aggarwal VK, Smith HW, Hynd G, Jones RV. H, Fieldhouse R, Spey SE. J. Chem. Soc., Perkin Trans. 1 2000; 3267
- 66 Padwa A. 1,3-Dipolar Cycloaddition Chemistry, Vol. 1. John Wiley & Sons; New York: 1984
- 67 Nakano Y, Hamaguchi M, Nagai T. J. Org. Chem. 1989; 54: 1135
- 68 Zhu C, Li J, Chen P, Wu W, Ren Y, Jiang H. Org. Lett. 2016; 18: 1470
- 69 Wu W, Lin Z, Zhu C, Chen P, Li J, Jiang H. J. Org. Chem. 2017; 82: 12746
- 70 Nie X, Wang Y, Yang L, Yang Z, Kang T. Tetrahedron Lett. 2017; 3003
- 71 Chen Y.-Z, Liu T, Zhu J, Zhang H, Wu L. Org. Chem. Front. 2018; 5: 3567
- 72 Ramu G, Krishna NH, Pawar G, Sastry KN. V, Nanubolu JB, Babu BN. ACS Omega 2018; 3: 12349
- 73 Taber DF, Guo P. J. Org. Chem. 2008; 73: 9479
- 74 Taber DF, Guo P, Guo N. J. Am. Chem. Soc. 2010; 132: 11179
- 75a Doyle MP, Yan M. J. Org. Chem. 2002; 67: 602
- 75b Denton JR, Sukumaran D, Davies HM. L. Org. Lett. 2007; 9: 2625
- 76 Tran DN, Battilocchio C, Lou S.-B, Hawkins JM, Ley SV. Chem. Sci. 2015; 6: 1120
- 77 Battilocchio C, Feist F, Hafner A, Simon M, Tran DN, Allwood DM, Blakemore DC, Ley SV. Nat. Chem. 2016; 8: 360
- 78 Poh J.-S, Tran DN, Battilocchio C, Hawkins JM, Ley SV. Angew. Chem. Int. Ed. 2015; 54: 7920
- 79 Roda NM, Tran DN, Battilocchio C, Labes R, Ingham RJ, Hawkins JM, Ley SV. Org. Biomol. Chem. 2015; 13: 2550
- 80 Majchrzak MW, Bekhazi M, Tse-Sheepy I, Warkentin J. J. Org. Chem. 1989; 54: 1842
- 81 Greb A, Poh J.-S, Greed S, Battilocchio C, Pasau P, Blakemore DC, Ley SV. Angew. Chem. Int. Ed. 2017; 56: 16602
- 82 Dingwall P, Greb A, Crespin LN. S, Labes R, Musio B, Poh JS, Pasau P, Blakemore DC, Ley SV. Chem. Commun. 2018; 54: 11685
- 83 Chen Y, Leonardi M, Dingwall P, Labes R, Pasau P, Blakemore DC, Ley SV. J. Org. Chem. 2018; 83: 15558
- 84 Chen Y, Blakemore DC, Pasau P, Ley SV. Org. Lett. 2018; 20: 6569
- 85 Day AC, Raymond P, Southam RM, Whiting MC. J. Chem. Soc. C 1966; 467
- 86a Holton TL, Schechter H. J. Org. Chem. 1995; 60: 4725
- 86b Wommack AJ, Kingsbury JS. J. Org. Chem. 2013; 78: 10573
- 87 Applequist DE, Babad H. J. Org. Chem. 1962; 27: 288
- 88 Rullière P, Benoit G, Allouche EM. D, Charette AB. Angew. Chem. Int. Ed. 2018; 57: 5777
- 89a Durán-Peña MJ, Botubol Ares JM, Hanson JR, Collado IG, Hernández-Galán R. Nat. Prod. Rep. 2015; 32: 1236
- 89b Talele TT. J. Med. Chem. 2018; 61: 2166
- 90 Furrow ME, Myers AG. J. Am. Chem. Soc. 2004; 126: 12222
- 91 Furrow ME, Myers AG. J. Am. Chem. Soc. 2004; 126: 5436
- 92 Allouche EM. D, Charette AB. Chem. Sci. 2019; 10: 3802
For selected reviews on the synthesis of cyclopropanes, see:
For selected examples, see:
For a selected example of the use of nickel carbenoid species in Simmons–Smith type cyclopropanations, see:
For selected examples on the use of cobalt carbenoid species in Simmons-Smith type cyclopropanations, see:
These enantioenriched halocyclopropanes were also synthesized by Walsh and co-workers via the diastereoselective halocyclopropanations of chiral allylic alcohols generated in situ by an enantioselective MIB-catalyzed (MIB=(2S)-3-exo-(morpholino)isoborneol) dialkylzinc 1,2-addition to α,β-unsaturated aldehydes, see:
For works on the use of diazo reagents and zinc salts in cyclopropanation, see:
For recent reviews on the continuous-flow synthesis of diazo compounds, see:
For selected reviews on the use of N-tosylhydrazones as diazo surrogates, see:
For detailed experimental and theoretical studies on the radical mechanism of Co(II)-catalyzed MRC, see:
Although in moderate yields, these bicyclic cyclopropanes were also synthesized using free arylalkyl- hydrazones and MnO2, see:
For selected examples of the use of MnO2 to generate diazo compounds from hydrazones in batch mode, see: