Synlett 2019; 30(16): 1891-1894
DOI: 10.1055/s-0037-1611920
letter
© Georg Thieme Verlag Stuttgart · New York

Ruthenium-Catalyzed, Microwave-Mediated [2+2+2] Cycloaddition: A Useful Combination for the Synthesis of 2-Aminopyridines

C. Tran
,
M. Haddad
,
PSL Research University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 11 Rue Pierre et Marie Curie, Paris, 75005 Paris, France   eMail: virginie.vidal@chimie-paristech.fr
› Institutsangaben

We thank the Ministère de l'Enseignement Supérieur de la Recherche et de l’Innovation, Chimie ParisTech (C.T.) and the CNRS for financial support.
Weitere Informationen

Publikationsverlauf

Received: 19. Juli 2019

Accepted after revision: 20. August 2019

Publikationsdatum:
03. September 2019 (online)


Abstract

A ruthenium-catalyzed [2+2+2] cycloaddition between α,ω-diynes and cyanamides is reported under microwave irradiation to access 2-aminopyridines. In contrast to the classical thermal conditions, this atom-economical sustainable protocol allows access to diverse functionalized 2-aminopyridine derivatives with high yields and excellent regioselectivities in MeTHF with short reaction times.

Supporting Information

 
  • References and Notes

  • 1 Nelson WM. Green Solvents for Chemistry: Perspectives and Practice . Oxford University Press; New York: 2003
  • 2 Clark JH, Tavener SJ. Org. Process Res. Dev. 2007; 11: 149
  • 3 Kerton FM. Alternative Solvents for Green Chemistry. RSC Publishing; Cambridge: 2009
  • 4 Cue BW, Zhang J. Green Chem. Lett. Rev. 2009; 2: 193
  • 5 Anastas PT, Warner JC. Green Chemistry Theory and Practice. Oxford University Press; Oxford: 1998
  • 6 Matlack AS. Introduction to Green Chemistry. Marcel Dekker; New York: 2001
  • 7 Handbook of Green Chemistry and Technology. Clark JH. Macquarrie DJ. Blackwell Publishing; Abingdon: 2002
  • 8 Lancaster M. Green Chemistry: An Introductory Text. RSC Editions; Cambridge: 2002
  • 9 Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. Science 2002; 297: 807
  • 10 Sheldon RA, Arends I, Hanefeld U. Green Chemistry and Catalysis . Wiley-VCH; Weinheim: 2007
  • 11 Dallinger D, Kappe CO. Chem. Rev. 2007; 107: 2563
  • 12 Polshettiwar V, Varma RS. Chem. Soc. Rev. 2008; 37: 1546
  • 13 Polshettiwar V, Varma RS. Acc. Chem. Res. 2008; 41: 629
  • 14 Aqueous Microwave Chemistry . Polshettiwar V, Varma RS. RSC Publishing; Cambridge: 2010

    • For selected reviews, see:
    • 15a Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 15b Tanaka K. Synlett 2007; 1977
    • 15c Varela JA, Saá C. Synlett 2008; 2571
    • 15d Tanaka K. Chem. Asian J. 2009; 4: 508
    • 15e Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 15f Hua R, Abrenica MV. A, Wang P. Curr. Org. Chem. 2011; 15: 712
    • 15g Weding N, Hapke M. Chem. Soc. Rev. 2011; 40: 4525
    • 15h Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639
    • 15i Tanaka K. Heterocycles 2012; 85: 1017
    • 15j Wang C, Wan B. Chin. Sci. Bull. 2012; 57: 2338
    • 15k Okamoto S, Sugiyama Y. Synlett 2013; 24: 1044
    • 15l Satoh Y, Obora Y. Eur. J. Org. Chem. 2015; 5041
    • 15m Jungk P, Täufer T, Thiel I, Hapke M. Synthesis 2016; 48: 2026
    • 15n Babazadeh M, Soleimani-Amiri S, Vessally E, Hosseinian A, Edjlali L. RSC Adv. 2017; 7: 43716

    • For selected examples, see:
    • 15o Zhang H.-C, Boñaga LV. R, Ye H, Derian CK, Damiano BP, Maryanoff BE. Bioorg. Med. Chem. Lett. 2007; 17: 2863
    • 15p Hapke M, Kral K, Fischer C, Spannenberg A, Gutnov A, Redkin D, Heller B. J. Org. Chem. 2010; 75: 3993
    • 15q Garcia P, Evanno Y, George P, Sevrin M, Ricci G, Malacria M, Aubert C, Gandon V. Chem. Eur. J. 2012; 18: 4337
    • 15r Garcia P, Evanno Y, George P, Sevrin M, Ricci G, Malacria M, Aubert C, Gandon V. Org. Lett. 2011; 13: 2030
    • 15s Tanaka K, Suzuki N, Nishida G. Eur. J. Org. Chem. 2006; 3917
    • 15t Spahn NA, Nguyen MH, Renner J, Lane TK, Louie J. J. Org. Chem. 2017; 82: 234
  • 16 Young DD, Teske JA, Deiters A. Synthesis 2009; 3785
  • 17 Young DD, Sripada L, Deiters A. J. Comb. Chem. 2007; 9: 735
  • 18 Zou Y, Deiters A. J. Org. Chem. 2010; 75: 5355
  • 19 Teske JA, Deiters A. Org. Lett. 2008; 10: 2195
  • 20 Sripada L, Teske JA, Deiters A. Org. Biomol. Chem. 2008; 6: 263
  • 21 Cadierno V, Francos J, García-Garrido SE, Gimeno J. Green Chem. Lett. Rev. 2011; 4: 55
  • 22 Dallinger D, Irfan M, Suljanovic A, Kappe CO. J. Org. Chem. 2010; 75: 5278
  • 23 Novák P, Číhalová S, Otmar M, Hocek M, Kotora M. Tetrahedron 2008; 64: 5200
  • 24 Haraburda E, Lledó A, Roglans A, Pla-Quintana A. Org. Lett. 2015; 17: 2882
  • 25 Garcia L, Pla-Quintana A, Roglans A, Parella T.   Eur. J. Org. Chem. 2010; 3407
  • 26 Young DD, Deiters A. Angew. Chem. Int. Ed. 2007; 46: 5187
  • 27 Rodriguez AM, Cebrián C, Prieto P, García JI, de la Hoz A, Díaz-Ortiz Á. Chem. Eur. J. 2012; 18: 6217
  • 28 Geny A, Agenet N, Iannazzo L, Malacria M, Aubert C, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810
  • 29 Turek P, Hocek M, Pohl R, Klepetářová B, Kotora M. Eur. J. Org. Chem. 2008; 3335
  • 30 Kadlčíková A, Kotora M. Molecules 2009; 14: 2918
  • 31 Nicolaus N, Strauss S, Neudörfl J.-M, Prokop A, Schmalz H.-G. Org. Lett. 2009; 11: 341
  • 32 Zhou Y, Porco Jr JA, Snyder JK. Org. Lett. 2007; 9: 393
  • 33 Teske JA, Deiters A. J. Org. Chem. 2008; 73: 342
  • 34 Shanmugasundaram M, Aguirre AL, Leyva M, Quan B, Martinez LE. Tetrahedron Lett. 2007; 48: 7698
  • 35 Kotha S, Sreevani G. Tetrahedron Lett. 2015; 56: 5903
  • 36 Siemiaszko G, Six Y. New J. Chem. 2018; 42: 20219
  • 37 Lin Y.-Y, Tsai S.-C, Yu SJ. J. Org. Chem. 2008; 73: 4920
    • 38a Jacquet J, Auvinet A.-L, Mandadapu AK, Haddad M, Ratovelomanana-Vidal V, Michelet V. Adv. Synth. Catal. 2015; 357: 1387
    • 38b Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2016; 18: 5612
    • 38c Ye F, Haddad M, Ratovelomanana-Vidal V, Michelet V. Org. Lett. 2017; 19: 1104
    • 38d Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Chem. Front. 2017; 4: 1063
    • 38e Ye F, Boukattaya F, Haddad M, Ratovelomanana-Vidal V, Michelet V. New J. Chem. 2018; 42: 3222
    • 38f Ye F, Tran C, Jullien L, Le SauxT, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2018; 20: 4950
    • 38g Tran C, Haddad M, Ratovelomanana-Vidal V. Synthesis 2019; 51: 2532

      Diynes 1a, 1b, and 1h were prepared according to:
    • 39a ref. 38e. Diyne 1c was prepared according to:
    • 39b Hashmi AS. K, Haffner T, Rudolph M, Rominger F. Chem. Eur. J. 2011; 17: 8195

    • Diyne 1d and 1e were prepared according to:
    • 39c Bednářová E, Colacino E, Lamaty F, Kotora M. Adv. Synth. Catal. 2016; 358: 1916

    • Diyne 1f was prepared according to:
    • 39d Kumar P, Zhang K, Louie J. Angew. Chem. Int. Ed. 2012; 51: 8602

    • Diyne 1g was prepared according to the procedure reported by:
    • 39e Amatore M, Lebœuf D, Malacria M, Gandon V, Aubert C. J. Am. Chem. Soc. 2013; 135: 4576
  • 40 General Procedure for the Ru-Catalyzed [2+2+2] Cycloaddition of Diynes and Cyanamides In a microwave tube equipped with [Cp*Ru(CH3CN)3]PF6 (2 mol%) and diyne 1 (0.2–0.5 mmol, 1.0 equiv), a solution of cyanamide 2 (0.3–0.6 mmol) in MeTHF (1 mL) was added under an argon atmosphere. The reaction mixture was then stirred at 50 °C, with 50 W irradiation for 15 min in a microwave reactor (fixed power mode). The crude mixture was concentrated under reduced pressure. The dark oil was then filtered through a silica pad, washing with MeTHF, or purified by flash chromatography on silica gel. In some cases,the excess cyanamide was removed by bulb-to-bulb distillation.
  • 41 Although the cycloadduct 3c was obtained in moderate yield under thermal conditions, a side product was observed38e in 27% yield. The microwave irradiation minimizes the formation of side or degradation products.