Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(11): 2387-2396
DOI: 10.1055/s-0037-1612253
DOI: 10.1055/s-0037-1612253
paper
Activation of Primary Amines by Copper(I)-Based Lewis Acid Promoters in the Solventless Synthesis of Secondary Propargylamines
This work was carried out under the framework of the University Research Project ‘Chemical Swiss tools to treat tumors, metastases and infections’ supported by the University of Camerino (FAR 2014-2015).Further Information
Publication History
Received: 12 November 2018
Accepted after revision: 24 January 2019
Publication Date:
11 March 2019 (online)
Abstract
Primary amines are activated by copper(I)-based Lewis acid promoters in an A3-coupling one-pot solventless reaction with aldehydes and phenylacetylene for the synthesis of secondary propargylamines. The reaction is promoted by a CuSO4/NaI system, a practical precursor of the in situ generated effective CuI/I2 system, that worked well, but only in a restricted number of examples. Substitution of I2 with CeCl3·7H2O in a one-pot two-step reaction provided good yields and a wider applicability, with the added value given by a safer procedure.
Key words
propargylamines - A3 coupling - primary amines - copper - cerium trichloride - Lewis acidsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612253.
- Supporting Information
-
References
- 1 Ermolat’ev DS, Bariwal JB, Steenackers HP. L, De Keersmaecker SC. J, Van der Eycken EV. Angew. Chem. Int. Ed. 2010; 49: 9465
- 2 Fedoseev P, Sharma N, Khunt R, Ermolat’ev DS, Van der Eycken EV. RSC Adv. 2016; 6: 75202
- 3 Yuan B, Zhang F, Li Z, Yang S, Yan R. Org. Lett. 2016; 18: 5928
- 4 Weng J, Chen Y, Yue B, Xu M, Jin H. Eur. J. Org. Chem. 2015; 3164
- 5 Kwon K.-H, Serrano CM, Koch M, Barrows LR, Looper RE. Org. Lett. 2014; 16: 6048
- 6 Grishina AA, Polyakova SM, Kunetskiy RA, Císařová I, Lyapkalo IM. Chem. Eur. J. 2011; 17: 96
- 7 Ranjan A, Yerande R, Wakchaure PB, Yerande SG, Dethe DH. Org. Lett. 2014; 16: 5788
- 8 Nechaev AA, Peshkov AA, Van Hecke K, Peshkov VA, Van der Eycken EV. Eur. J. Org. Chem. 2017; 1063
- 9 Ying J, Wang H, Qi X, Peng J, Wu X. Eur. J. Org. Chem. 2018; 688
- 10 Wang H, Ying J, Lai M, Qi X, Peng J, Wu X. Adv. Synth. Catal. 2018; 360: 1693
- 11 Peshkov VA, Pereshivko OP, Sharma S, Meganathan T, Parmar VS, Ermolat’ev DS, Van der Eycken EV. J. Org. Chem. 2011; 76: 5867
- 12 Pereshivko OP, Peshkov VA, Jacobs J, Van Meervelt L, Van der Eycken EV. Adv. Synth. Cat. 2013; 355: 781
- 13 Campbell MJ, Toste FD. Chem. Sci. 2011; 2: 1369
- 14 Wang G, Liu C, Li B, Wang Y, Van Hecke K, Van der Eycken EV, Pereshivko OP, Peshkov VA. Tetrahedron 2017; 73: 6372; and references cited therein
- 15 Pereshivko OP, Peshkov VA, Peshkov AA, Jacobs J, Van Meervelt L, Van der Eycken EV. Org. Biomol. Chem. 2014; 12: 1741
- 16 Sadeghzadeh SM, Zhiani R, Emrani S. Appl. Organomet. Chem. 2018; 32: e3941
- 17 Sadeghzadeh SM. Appl. Organomet. Chem. 2016; 30: 835
- 18 Sadeghzadeh SM. J. Mol. Catal. A: Chem. 2016; 423: 216
- 19 Liu X, Wang MY, Wang SY, Wang Q, He LN. ChemSusChem 2017; 10: 1210
- 20 Kikuchi S, Yoshida S, Sugawara Y, Yamada W, Cheng H, Fukui K, Sekine K, Iwakura I, Ikeno T, Yamada T. Bull. Chem. Soc. Jpn. 2011; 84: 698
- 21 Zhao Y, Qiu J, Li Z, Wang H, Fan M, Wang J. ChemSusChem 2017; 10: 2001
- 22 Hu J, Ma J, Zhu Q, Zhang Z, Wu C, Han B. Angew. Chem. Int. Ed. 2015; 54: 5399
- 23 Wang M, Song Q, Ma R, Xie J, He L. Green Chem. 2016; 18: 282
- 24 Hu J, Ma J, Zhang Z, Zhu Q, Zhou H, Lua W, Han B. Green Chem. 2015; 17: 1219
- 25 Li CJ, Wei C. Chem. Commun. 2002; 268
- 26 Peshkov VA, Pereshivko OP, Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790; and references cited therein
- 27 Lauder K, Toscani A, Scalacci N, Castagnolo D. Chem. Rev. 2017; 117: 14091 ; and references cited therein
- 28 Saha TK, Das R. ChemistrySelect 2018; 3: 147
- 29 Shehzadi SA, Saeed A, Lemière F, Maes BU. W, Tehrani KA. Eur. J. Org. Chem. 2018; 78
- 30 Yusubov MS, Zhdankin VV. Resour.-Effic. Technol. 2015; 1: 49
- 31 Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, Carpenter LJ, Luther GV. III, Lu Z, Jonsson M, Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
- 32 Li X, Mao Z, Wang Y, Chen W, Lin X. Tetrahedron 2011; 67: 3858
- 33 Brotherton WS, Clark RJ, Zhu L. J. Org. Chem. 2012; 77: 6443 ; and references cited therein
- 34 Bailey AD, Cherney SM, Anzalone PW, Anderson ED, Ernat JJ, Mohan RJ. Synlett 2006; 215
- 35 Bartoli G, Marcantoni E, Marcolini M, Sambri L. Chem. Rev. 2010; 110: 6104 ; and references cited therein
- 36 Multicomponent Reactions: Concepts and Applications for Design and Synthesis. Herrera RP, Marqués-López E. John Wiley & Sons; Hoboken, New Jersey: 2015
- 37 Bartoli G, Marcantoni E, Sambri L. Synlett 2003; 2101
- 38 Bartoli G, Fernández-Bolaños JG, Di Antonio G, Foglia G, Giuli S, Gunnella R, Mancinelli M, Marcantoni E, Paoletti M. J. Org. Chem. 2007; 72: 6029
- 39 Cimarelli C, Di Nicola M, Diomedi S, Giovannini R, Hamprecht D, Properzi R, Sorana F, Marcantoni E. Org. Biomol. Chem. 2015; 13: 11687
- 40 Ravishankar L, Patwe SA, Gosarani N, Roy A. Synth. Commun. 2010; 40: 3177
- 41 Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
- 42 Lu Y, Johnstone TC, Arndtsen BA. J. Am. Chem. Soc. 2009; 131: 11284
- 43 Feng H, Ermolat’ev DS, Song G, Van der Eycken EV. J. Org. Chem. 2011; 76: 7608
- 44 Wachenfeldt H. v, Paulsen F, Sundin A, Strand D. Eur. J. Org. Chem. 2013; 4578
- 45 Bariwal JB, Ermolat’ev DS, Van der Eycken EV. Chem. Eur. J. 2010; 16: 3281
- 46 Tong S, Wang Q, Wang MX, Zhu J. Angew. Chem. Int. Ed. 2015; 54: 1293
- 47 Shi L, Tu YQ, Wang M, Zhang FM, Fan CA. Org. Lett. 2004; 6: 1001