Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(07): 783-786
DOI: 10.1055/s-0037-1612302
DOI: 10.1055/s-0037-1612302
letter
Catalytic Hydrogenations with Cationic Heteroleptic Copper(I)/N-Heterocyclic Carbene Complexes
This work was supported by the German Research Council (DFG, Emmy Noether Fellowship for J. F. T., TE1101/2-1).Further Information
Publication History
Received: 15 January 2019
Accepted after revision: 08 February 2019
Publication Date:
06 March 2019 (online)
Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop
Abstract
A new heteroleptic cationic copper(I) complex bearing two N-heterocyclic carbene (NHC) ligands has been prepared. In situ, a Cu–O bond can be generated which enables the complex to catalytically activate H2. The resulting complex shows activity in catalytic chemo- and stereoselective alkyne semihydrogenations as well as conjugate reductions of enones.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612302.
- Supporting Information
-
References and Notes
- 1 Present address: Stratingh Institute for Chemisty, Rijksuniversiteit Groningen, The Netherlands.
- 2a Egbert JD, Cazin CS. J, Nolan SP. Catal. Sci. Techn. 2013; 3: 912
- 2b Lin JC. Y, Huang RT. W, Lee CS, Bhattacharyya A, Hwang WS, Lin IJ. B. Chem. Rev. 2009; 109: 3561
- 3 For a review, see: Lazreg F, Nahra F, Cazin CS. J. Coord. Chem. Rev. 2015; 293: 48
- 4a Díez-González S, Stevens ED, Scott NM, Petersen JL, Nolan SP. Chem. Eur. J. 2008; 14: 158
- 4b Grandbois A, Mayer M.-E, Bédard M, Collins SK, Michel T. Chem. Eur. J. 2009; 15: 9655
- 4c Díaz Velázquez H, Ruiz García Y, Vandichel M, Madder A, Verpoort F. Org. Biomol. Chem. 2014; 12: 9350
- 5a Halpern J. J. Phys. Chem. 1959; 63: 398
- 5b Chalk AJ, Halpern J. J. Am. Chem. Soc. 1959; 81: 5852
- 5c Goeden GV, Caulton KG. J. Am. Chem. Soc. 1981; 103: 7354
- 6a Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934
- 6b Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660
- 6c Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354
- 6d Thiel NO, Kemper S, Teichert JF. Tetrahedron 2017; 73: 5023
- 6e Pape F, Teichert JF. Synthesis 2017; 49: 2470
- 6f Zimmermann B, Teichert J. Chem. Commun. 2019; 55: 2293
- 6g Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318
- 7a Nguyen TN. T, Thiel NO, Pape F, Teichert JF. Org. Lett. 2016; 18: 2455
- 7b Korytiakova E, Thiel NO, Pape F, Teichert JF. Chem. Commun. 2017; 53: 732
- 7c Nguyen TN. T. Thiel N. O, Teichert JF. Chem. Commun. 2017; 53: 11686
- 7d Das M, Kaicharla T, Teichert JF. Org. Lett. 2018; 20: 4926
- 7e Pape F, Brechmann LT, Teichert JF. Chem. Eur. J. 2019; 25: 985
- 8a Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206
- 8b Hameury S, Frémont P, de Braunstein P. Chem. Soc. Rev. 2017; 46: 632
- 8c Liddle ST, Edworthy IS, Arnold PL. Chem. Soc. Rev. 2007; 36: 1732
- 9a Fortman GC, Slawin AM. Z, Nolan SP. Organometallics 2010; 29: 3966
- 9b Nelson DJ, Nolan SP. Coord. Chem. Rev. 2017; 353: 278
- 10 Santoro O, Lazreg F, Minenkov Y, Cavallo L, Cazin CS. J. Dalton Trans. 2015; 44: 18138
- 11 Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237
- 12 For an investigation of the deprotonation behavior of ‘tethered’ NHC precursors, see: Arnold PL, Casely IJ, Turner ZR, Carmichael CD. Chem. Eur. J. 2008; 14: 10415
- 13 CCDC 1890624 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
- 14 Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369
- 15a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
- 15b Deutsch C, Krause N. Chem. Rev. 2008; 108: 2916
- 15c Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
- 16a Rendler S, Plefka O, Karatas B, Auer G, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M. Chem. Eur. J. 2008; 14: 11512
- 16b Gathy T, Peeters D, Leyssens T. J. Organomet. Chem. 2009; 694: 3943
- 16c Vergote T, Nahra F, Merschaert A, Riant O, Peeters D, Leyssens T. Organometallics 2014; 33: 1953
- 17a Lake BR. M, Willans CE. Chem. Eur. J. 2013; 19: 16780
- 17b Marion R, Sguerra F, Di Meo F, Sauvageot J.-F, Lohier R, Daniellou R, Renaud J.-L, Linares M, Hamel M, Gaillard S. Inorg. Chem. 2014; 53: 9181
- 18 For another example of catalyst activation by loss of one NHC ligand from a cationic copper(I) complex, see ref. 4b.
For reviews, see:
For selected examples, see:
For the formulation of the mechanistic hypothesis of H2 activation along Cu–O bonds, see:
For catalytic hydrogenations with copper(I)/NHC complexes, see:
For a related copper(I)-catalyzed alkyne semihydrogenation employing phosphine ligands, see:
For related reductive transformations with copper(I)/NHC complexes, see:
For reviews on ‘tethered’ NHC ligands, see:
For a review on transition metal hydroxides, see:
For reviews on copper(I) hydride chemistry, see:
For a related T-shaped copper(I) complex, see:
A trigonal planar coordination of the ligands in 6 would also be viable. For examples of trigonal copper(I)/NHC complexes, see: