Synlett 2019; 30(07): 783-786
DOI: 10.1055/s-0037-1612302
letter
© Georg Thieme Verlag Stuttgart · New York

Catalytic Hydrogenations with Cationic Heteroleptic Copper(I)/N-Heterocyclic Carbene Complexes

,
,
Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany   Email: johannes.teichert@chem.tu-berlin.de
› Author Affiliations
This work was supported by the German Research Council (DFG, Emmy Noether Fellowship for J. F. T., TE1101/2-1).
Further Information

Publication History

Received: 15 January 2019

Accepted after revision: 08 February 2019

Publication Date:
06 March 2019 (online)


Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop

Abstract

A new heteroleptic cationic copper(I) complex bearing two N-heterocyclic carbene (NHC) ligands has been prepared. In situ, a Cu–O­ bond can be generated which enables the complex to catalytically activate H2. The resulting complex shows activity in catalytic chemo- and stereoselective alkyne semihydrogenations as well as conjugate reductions of enones.

Supporting Information

 
  • References and Notes

  • 1 Present address: Stratingh Institute for Chemisty, Rijksuniversiteit Groningen, The Netherlands.

    • For reviews, see:
    • 2a Egbert JD, Cazin CS. J, Nolan SP. Catal. Sci. Techn. 2013; 3: 912
    • 2b Lin JC. Y, Huang RT. W, Lee CS, Bhattacharyya A, Hwang WS, Lin IJ. B. Chem. Rev. 2009; 109: 3561
  • 3 For a review, see: Lazreg F, Nahra F, Cazin CS. J. Coord. Chem. Rev. 2015; 293: 48

    • For selected examples, see:
    • 4a Díez-González S, Stevens ED, Scott NM, Petersen JL, Nolan SP. Chem. Eur. J. 2008; 14: 158
    • 4b Grandbois A, Mayer M.-E, Bédard M, Collins SK, Michel T. Chem. Eur. J. 2009; 15: 9655
    • 4c Díaz Velázquez H, Ruiz García Y, Vandichel M, Madder A, Verpoort F. Org. Biomol. Chem. 2014; 12: 9350

      For the formulation of the mechanistic hypothesis of H2 activation along Cu–O bonds, see:
    • 5a Halpern J. J. Phys. Chem. 1959; 63: 398
    • 5b Chalk AJ, Halpern J. J. Am. Chem. Soc. 1959; 81: 5852
    • 5c Goeden GV, Caulton KG. J. Am. Chem. Soc. 1981; 103: 7354

      For catalytic hydrogenations with copper(I)/NHC complexes, see:
    • 6a Pape F, Thiel NO, Teichert JF. Chem. Eur. J. 2015; 21: 15934
    • 6b Thiel NO, Teichert JF. Org. Biomol. Chem. 2016; 14: 10660
    • 6c Wakamatsu T, Nagao K, Ohmiya H, Sawamura M. Organometallics 2016; 35: 1354
    • 6d Thiel NO, Kemper S, Teichert JF. Tetrahedron 2017; 73: 5023
    • 6e Pape F, Teichert JF. Synthesis 2017; 49: 2470
    • 6f Zimmermann B, Teichert J. Chem. Commun. 2019; 55: 2293

    • For a related copper(I)-catalyzed alkyne semihydrogenation employing phosphine ligands, see:
    • 6g Semba K, Kameyama R, Nakao Y. Synlett 2015; 26: 318

      For related reductive transformations with copper(I)/NHC complexes, see:
    • 7a Nguyen TN. T, Thiel NO, Pape F, Teichert JF. Org. Lett. 2016; 18: 2455
    • 7b Korytiakova E, Thiel NO, Pape F, Teichert JF. Chem. Commun. 2017; 53: 732
    • 7c Nguyen TN. T. Thiel N. O, Teichert JF. Chem. Commun. 2017; 53: 11686
    • 7d Das M, Kaicharla T, Teichert JF. Org. Lett. 2018; 20: 4926
    • 7e Pape F, Brechmann LT, Teichert JF. Chem. Eur. J. 2019; 25: 985

      For reviews on ‘tethered’ NHC ligands, see:
    • 8a Pape F, Teichert JF. Eur. J. Org. Chem. 2017; 4206
    • 8b Hameury S, Frémont P, de Braunstein P. Chem. Soc. Rev. 2017; 46: 632
    • 8c Liddle ST, Edworthy IS, Arnold PL. Chem. Soc. Rev. 2007; 36: 1732
    • 9a Fortman GC, Slawin AM. Z, Nolan SP. Organometallics 2010; 29: 3966

    • For a review on transition metal hydroxides, see:
    • 9b Nelson DJ, Nolan SP. Coord. Chem. Rev. 2017; 353: 278
  • 10 Santoro O, Lazreg F, Minenkov Y, Cavallo L, Cazin CS. J. Dalton Trans. 2015; 44: 18138
  • 11 Clavier H, Coutable L, Toupet L, Guillemin J.-C, Mauduit M. J. Organomet. Chem. 2005; 690: 5237
  • 12 For an investigation of the deprotonation behavior of ‘tethered’ NHC precursors, see: Arnold PL, Casely IJ, Turner ZR, Carmichael CD. Chem. Eur. J. 2008; 14: 10415
  • 13 CCDC 1890624 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 14 Mankad NP, Laitar DS, Sadighi JP. Organometallics 2004; 23: 3369

    • For reviews on copper(I) hydride chemistry, see:
    • 15a Jordan AJ, Lalic G, Sadighi JP. Chem. Rev. 2016; 116: 8318
    • 15b Deutsch C, Krause N. Chem. Rev. 2008; 108: 2916
    • 15c Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2007; 46: 498
    • 16a Rendler S, Plefka O, Karatas B, Auer G, Fröhlich R, Mück-Lichtenfeld C, Grimme S, Oestreich M. Chem. Eur. J. 2008; 14: 11512
    • 16b Gathy T, Peeters D, Leyssens T. J. Organomet. Chem. 2009; 694: 3943
    • 16c Vergote T, Nahra F, Merschaert A, Riant O, Peeters D, Leyssens T. Organometallics 2014; 33: 1953

      For a related T-shaped copper(I) complex, see:
    • 17a Lake BR. M, Willans CE. Chem. Eur. J. 2013; 19: 16780

    • A trigonal planar coordination of the ligands in 6 would also be viable. For examples of trigonal copper(I)/NHC complexes, see:
    • 17b Marion R, Sguerra F, Di Meo F, Sauvageot J.-F, Lohier R, Daniellou R, Renaud J.-L, Linares M, Hamel M, Gaillard S. Inorg. Chem. 2014; 53: 9181
  • 18 For another example of catalyst activation by loss of one NHC ligand from a cationic copper(I) complex, see ref. 4b.