Thromb Haemost 2002; 87(01): 141-148
DOI: 10.1055/s-0037-1612957
Review Article
Schattauer GmbH

Acute Hyperglycaemia Induces Changes in the Transcription Levels of 4 Major Genes in Human Endothelial Cells: Macroarrays-based Expression Analysis

Kamel Chettab*
1   INSERM U331, Faculty of Medicine R. T. H. Laënnec, Lyon, France
,
K. Zibara*
1   INSERM U331, Faculty of Medicine R. T. H. Laënnec, Lyon, France
,
S.-R. Belaiba
1   INSERM U331, Faculty of Medicine R. T. H. Laënnec, Lyon, France
,
J.L. McGregor
1   INSERM U331, Faculty of Medicine R. T. H. Laënnec, Lyon, France
› Author Affiliations
Further Information

Publication History

Received 10 February 2001

Accepted after resubmission 09 October 2001

Publication Date:
13 December 2017 (online)

Summary

Hyperglycaemia, in insulin-dependent or independent diabetes mellitus, promotes endothelial cell (EC) dysfunction and is a major factor in the development of macro- or microvascular diseases. The mechanisms and the disease-related genes in vascular diseases resulting from hyperglycaemia are poorly understood. Macroarrays, bearing a total of 588 cDNA known genes, were used to analyze HUVEC gene transcription subjected to 25 or 5-mM glucose for 24 h. Isolated mRNA derived from treated first passage HUVEC were reverse transcribed, 32P labeled, and hybridized to the cDNA macroarrays. Results show that acute hyperglycaemia induces an up-regulation of seven major genes, four of which were not previously reported in the literature. Northern blot analyses, performed on these 4 genes, confirm macroarrays results for αv, β4, c-myc, and MUC18. Moreover, time course analysis (0, 2, 4, 8, 12, 16, 24 h) of αv, β4, c-myc, and MUC18 mRNA expression, observed by northern blot assays, showed a peak at time points situated between 2 to 8 h. The 3 other genes (ICAM-1, β1, and IL-8), were shown by others to be significantly upregulated after glucose stimulation. Furthermore, ELISA assays performed on the supernatant of HUVEC culture medium showed a significant increase of IL-8 for cells treated with 25-mM compared to 5-mM glucose. Identified genes, upregulated in endothelial cells as a result of acute hyperglycaemia, may serve as therapeutic or diagnostic targets in vascular lesions present in diabetic patients. These results also demonstrate the use of cDNA macroarrays as an effective approach in identifying genes implicated in a diseased cell.

* Current address: Thrombosis Research Institute, Emmanuelle Kaye Building, Manresa Road, Chelsea, London, SW3 6LR, UK – Tel.: 00 44 20 7351 8314, Fax: 00 44 20 7351 8324, E-mail: ckamel@tri-london.ac.uk


 
  • References

  • 1 Ruderman NB, Williamson JR, Brownlee M. Glucose and diabetic vascular disease. FASEB J 1992; 06: 2905-14.
  • 2 Roth T, Podesta F, Ann Steep M, Boeri D, Lorenzi M. Integrin overexpression induced by high glucose and by human diabetes: potential pathway to cell dysfunction in diabetic microangiopathy. Proc Natl Acad Sci 1993; 90: 9640-4.
  • 3 Taki H, Kashiwagi A, Tanaka Y, Horiike K. Expression of intracellular adhesion molecules 1 (ICAM-1) via an osmotic effect in human umbilical vein endothelial cells exposed to high glucose medium. Life Sci 1996; 58: 1713-21.
  • 4 Kim JA, Berliner JA, Natarajan RD, Nadler JL. Evidence that glucose increase Monocyte binding to human aortic endothelial cells. Diabetes 1994; 42: 1103-7.
  • 5 Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, Zoja C, Remuzzi G. Leukocyte-endothelial interactions is augmented by high glucose concentrations and hyperglycaemia in a NF-KB-dependent fashion. J Clin Invest 1998; 101: 1905-15.
  • 6 Hunt JV, Dean RT, Wolff SP. Hydroxyl radical production and autoxidation glycolysation. Glucose autoxidation as a cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J 1988; 256: 205-12.
  • 7 Wolff SP, Dean RT. Glucose oxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochem J 1987; 245: 243-50.
  • 8 Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes 1994; 43: 1-8.
  • 9 Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, vanden MEnden, Kilo C, Tilton RG. Hyperglyceamic pseudohypoxia and diabetic complications. Diabetes 1993; 42: 801-13.
  • 10 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-9.
  • 11 Springer TA. Adhesion receptors of the immune system. Nature 1990; 346: 425-34.
  • 12 Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci USA 1996; 93: 10614-9.
  • 13 Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res 1996; 21: 639-45.
  • 14 Aaronson JS, Eckman B, Blevins RA, Borkowski JA, Myerson J, Imran S, Elliston KO. Toward the development of a gene index to the human genome: an assessment of the nature of high-throughput EST sequence data. Genome Res 1996; 06: 829-45.
  • 15 Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, DuBuque T, Favello A, Gish W, Hawkins M, Hultman M, Kucaba T, Lacy M, Le M, Le N, Mardis E, Moore B, Morris M, Parsons J, Prange C, Rifkin L, Rohlfing T, Schellenberg K, Marra M. Generation and analysis of 280.000 human expressed sequence tags. Genome Res 1996; 06: 807-28.
  • 16 Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derivedfrom umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745-56.
  • 17 Puente MDNavazo, Chettab K, Duhault J, Koenig-Berard E, McGregor JL. Glucose and insulin modulate the capacity of endothelial cells (HUVEC) to express P-selectin and bind a monocytic cell line (U937). Thromb Haemost 2001; 86: 680-5.
  • 18 Murphy JF, Bordet JC, Wyler B, Rissoan MC, Chomarat P, Defrance T, Miossec P, McGregor JL. The vitronectin receptor (αvβ3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells. Biochem J 1994; 304: 537-42.
  • 19 Felhding-Habermann B, Cheresh DA. Vitronectin and its receptors. Curr Opin Cell Biol 1993; 05: 864-8.
  • 20 Brooks PC, Clark RA, Chersh RA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569-71.
  • 21 Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha v integrin. Science 1995; 270: 1500-2.
  • 22 Brown SJ, Lundergren CH, Nordt T, Fujii S. Stimulation of migration of human aortic Smooth muscle cells by vitronectin: implication for atherosclerosis. Cardiovasc Res 1994; 28: 1815-20.
  • 23 Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessel during embryonic neovascularization. J Cell Sci 1995; 108: 2655-61.
  • 24 Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 1994; 91: 8856-60.
  • 25 Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY. High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH2-terminal kinase and Caspase-3. Circulation 2000; 101: 2618-24.
  • 26 Riu E, Bosch F, Valera A. Prevention of diabetic alterations in transgenic mice overexpression Myc in the liver. Proc Natl Acad Sci 1996; 93: 2198-3002.
  • 27 Valera A, Pujol A, Gregori X, Riu E, Visa J, Bosh F. Evidence from transgenic mice that c Myc regulates hepatic glycolysis. FASEB 1995; 09: 1067.
  • 28 Neidhart M, Wehrli R, Bruhlmann P, Michel BA, Gay RE, Gay S. Synovial fluid CD146 (MUC18), a marker for synovial membrane angiogenesis in rheumatoid arthritis. Arthritis Rheum 1999; 42: 622-30.
  • 29 Temaru R, Urakaze M, Satou A, Yamazaki K, Nakamura N, Kobayashi M. High glucose enhances the gene expression of interleukin-8 in human endothelial cells, but not in smooth muscle cells: possible role of interleukin-8 in diabetic macroangiopathy. Diabetologia 1997; 40: 610-3.
  • 30 Takami S, Yamashita S, Kihara S, Kameda KTakemura, Matsuzawa Y. High concentrationof glucose induces the expression of intracellular adhesion molecule-1 in human umbilical vein endothelial cells. Atherosclerosis 1998; 138: 35-41.
  • 31 Hännimen A, Jalkanen S, Salmi M, Toikkanen S, Nikolakaros G, Simell O. Macrophages, T cell receptor usage, and endothelial cell activation in the pancreas of the onset of insulin-dependent diabetes mellitus. J Clin Invest 1992; 90: 1901-10.
  • 32 Voisard R, Osswald M, Baur R, Jakob U, Susa M, Mattfeldt T, Hemmer W, Hannekum A, Koenig W, Hombach V. Expression of intracellular adhesion molecule-1 in human coronary endothelial and smooth muscle cells after stimulation with tumor necrosis factor-alpha. Corona Artery Dis 1998; 11: 737-45.
  • 33 Cominacini L, Garbin U, Pasini AF, Davoli A, Campagnola M, Contessi GB, Pastorino GB, Pastorino AM, Lo Cascio V. Antioxidants inhibit the expression of intracellular cell adhesion molecule-1 and vascular cell adhesion molecule-1 induced by oxidized LDL on human umbilical vein endothelial cells. Free Radic Biol Med 1997; 22: 117-27.
  • 34 Yang XD, Michie SA, Mebius RE, Tisch R, Weissman I, McDevitt HO. The role of cell adhesion molecules in the development of IDDM: implications for pathogenesis and therapy. Diabetes 1996; 45: 705-10.
  • 35 Lukacs NW, Strieter RM, Elner V, Evanoff HL, Burdick MD, Kunkel SL. Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte-endothelial cell interactions. Blood 1995; 86: 2767-73.
  • 36 Gerszten RE, Garcia EAZepeda, Lim YC, Yoshida M, Ding HA, Gimbrone MA, Luster AD, luscinskas FW, Rosenzweig A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 22: 718-23.
  • 37 Haynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-21.
  • 38 Jelesoff NE, Feinglos M, Granger CB, Califf RM. Outcomes of diabetic patients following acute myocardial infraction: a review of the major thrombolytic trials. Cor Artery Dis 1996; 07: 732-43.
  • 39 Muggeo M, Verlato G, Bonora E, Zoppini G, Corbellini M, de Marco R. Long-term instability of fasting plasma glucose, a novel predictor of cardiovascular mortality in elderly patients with non-insulin-dependent diabetes mellitus: the Verona Diabetes Study. Circulation 1997; 96: 1750-4.
  • 40 Kersten JR, Brooks LA, Dellsperger KC. Impaired microvascular response to graded coronary occlusion in diabetic and hyperglycemic dogs. Am J Physiol Heart Circ Physiol 1995; 268: H1667-H74.
  • 41 Koltai MZ, Hadhazy P, POSA I, Kocsis E, Winkler G, Rosen P, Pogatsa G. Characteristics of coronary endothelial dysfunction in experimental diabetes. Cardiovascular Res 1997; 37: 157-63.
  • 42 Ceriello A. The emerging role of post-prandial hyperglyceamic spikes in the pathogenesis of diabetic complications. Diabet Med 1998; 15: 188-93.
  • 43 Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycaemia abolishes ischemic preconditioning in vivo. Am J Physiol Heart Circ Physiol 1998; 175: H721-25.
  • 44 Kersten JR, Toller WG, Gross ER, Pagel PS, Wartier DC. Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol 2000; 278: H1218-H24.
  • 45 Green A, Johnson JL. Evidence for impaired coupling of receptors to G1 protein in adipocytes from streptozocin-induced diabetic rats. Diabetes 1991; 40: 88-94.
  • 46 Kawano H, Motoyama T, Hirashima O, Hirai N, Miyao Y, Sakamoto KKugiyama, Ogawa H, Yasue H. Hyperglyceamia rapidly suppress flowmediated endothelium-dependent vasodilatation of brachial artery. J Am Coll Cardiol 1999; 34: 146-54.
  • 47 Marfella R, Nappo F, De Angelis L, Paolissso G, Tagliamonte MR, Giugliano D. Hyperglycaemic effects of acute hyperglycaemia in type 1 diabetics patients. Diabetes Care 2000; 23: 658-61.
  • 48 Paolisso G, Giugliano D, Sheen AJ, Franchimont P, D’onofrio F, Lefebvre AJ. Primary role of glucagon release in the effect of beta-endorphin on glucose homeostasis in normal man. Acta Endocrinol 1987; 115: 161-9.
  • 49 Urata Y, Yamamoto H, Gato S, Tsushima H, Akazawa S, Tamashita S, Nagataki S, Londo T. Long exposure to high glucose concentration impairs the responsive exposition of γ-glutamylcysteine synthetase by interleukin1β and tumor necrosis factors-a in mouse endothelial cells. JBC 1996; 271: 15146-52.
  • 50 Haller H, Groschek Y, Luft FC. Glucose induces increased surface expression of adhesionmolecules VCAM-1 and ELAM-1 on endothelial cells via activation of protein kinase. C J Am Soc Nephrol 1994; 05: 965.