Thromb Haemost 2002; 88(02): 236-241
DOI: 10.1055/s-0037-1613193
In Focus
Schattauer GmbH

Reduced Activation of the Gla19Ala FX Variant via the Extrinsic Coagulation Pathway Results in Symptomatic CRMred FX Deficiency

M. Pinotti
1   Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Ferrara
,
G. Marchetti
1   Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Ferrara
,
M. Baroni
1   Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Ferrara
,
F. Cinotti
2   Dipartimento di Ematologia e Centro Emofilia Ospedale Careggi, Firenze, Italy
,
M. Morfini
2   Dipartimento di Ematologia e Centro Emofilia Ospedale Careggi, Firenze, Italy
,
F. Bernardi
1   Dipartimento di Biochimica e Biologia Molecolare, Università di Ferrara, Ferrara
› Author Affiliations
Further Information

Publication History

Received 24 October 2001

Accepted after resubmission 26 April 2002

Publication Date:
07 December 2017 (online)

Summary

We characterized a symptomatic CRMred factor X (FX) deficiency produced by the Glu19Ala mutation in the γ-carboxyglutamic-rich domain. FX activity levels in plasma were markedly reduced in prothrombin time assays (< 1-5%), whereas in activated partial thromboplastin assays (16%) and in RVV assays (17%) the reduction in activity mirrored that in antigen levels (17%). Activation of recombinant 19Ala-FX by factor IXa/factor VIIIa or RVV, and the activity in thrombin generation assays, were comparable to those of wild-type FX. Differently, complete activation of recombinant 19AlaFX required a factor VIIa/TF concentration 30-fold higher than that of wild-type FX. The recombinant FVIIa significantly reduced PT values in 19Ala-FX reconstituted plasma, thus suggesting an alternative approach for treatment of FX deficiencies characterized by defective FX activation.

The study of this FX deficiency provides an “in vivo” and “in vitro” model for the investigation of Gla domain interactions.

 
  • References

  • 1 James HL. Physiology and biochemistry of factor X. In: Haemostasis and Thrombosis. Bloom AL, Forbes CD, Thomas DP, Tuddenham EGD. eds. Edinburgh: Churchill Livingstone; 1994: 439-64.
  • 2 Davie EW, Fujikawa K, Kisiel W. The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991; 29: 10363-70.
  • 3 Butenas S, van’t Veer C, Mann KG. Evaluation of the initiation phase of blood coagulation using ultrasensitive assays for serine proteases. J Biol Chem 1997; 272: 21527-33.
  • 4 Furie BC, Furie B. Coagulant protein of Russell’s viper venom. Methods Enzymol 1976; 45: 191-205.
  • 5 Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S. Surfacedependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990; 76: 1-16.
  • 6 Sunnerhagen M, Forsen S, Hoffren AM, Drakenberg T, Teleman O, Stenflo J. Structure of the Ca2+-free Gla domain sheds light on membrane binding of blood coagulation proteins. Nat Struct Biol 1995; 02: 504-9.
  • 7 Furie B, Bouchard BA, Furie BC. Vitamin K-dependent biosynthesis of )’-carboxyglutamic acid. Blood 1999; 93: 1798-808.
  • 8 Falls LA, Furie BC, Jacobs M, Furie B, Rigby AC. The omega-loop region of the human prothrombin gamma-carboxyglutamic acid domain penetrates anionic phospholipid membranes. J Biol Chem 2001; 276: 23895-902.
  • 9 Fung MR, Colin WH, MacGillivray RTA. Characterization of an almost full-length cDNA coding for human blood coagulation factor X. Proc Natl Acad Sci USA 1985; 82: 3591-5.
  • 10 Huang Q, Neuenschwander PF, Rezaie AR, Morrissey JH. Substrate recognition by tissue factor-factor VIIa. J Biol Chem 1996; 271: 21752-7.
  • 11 Ruf W, Shobe J, Rao SM, Dickinson CD, Olson A, Edgington TS. Importance of factor VIIa Gla domain residue Arg-36 for recognition of the macromolecular substrate factor X Gla-domain. Biochemistry 1999; 38: 1957-66.
  • 12 Kirchhofer D, Lipari MT, Moran P, Eigenbrot C, Kelley RF. The tissue factor region that interacts with substrates factor IX and factor X. Biochemistry 2000; 39: 7380-7.
  • 13 Kirchhofer D, Eigenbrot C, Lipari MT, Moran P, Peek M, Kelley RF. The tissue factor region that interacts with factor Xa in the activation of factor VII. Biochemistry 2001; 40: 675-82.
  • 14 Hedner U, Davie EW. Introduction to hemostasis and the vitamin Kdependent coagulation factors. In: The Metabolic Basis of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D. eds. New York: Mc-Graw-Hill; 1989: 2107-27.
  • 15 Peyvandi F, Mannucci PM, Lak M, Abdoullahi M, Zeinali S, Sharifian R, Perry D. Congenital factor X deficiency: spectrum of bleeding symptoms in 32 Iranian patients. Br J Haematol 1998; 102: 626-8.
  • 16 Bernardi F, Marchetti G, Patracchini P, Volinia S, Gemmati D, Simioni P, Girolami A. Partial gene deletion in a family with factor X deficiency. Blood 1989; 73: 2123-7.
  • 17 Cooper DN, Millar DS, Wacey A, Pemberton S, Tuddenham EGD. Inherited Factor X deficiency: molecular genetics and pathophysiology. Thromb Haemost 1997; 78: 161-72.
  • 18 Millar DS, Elliston L, Deex P, Krawczak M, Wacey AI, Reynaud J, Nieuwenhuis HK, Bolton-Maggs P, Mannucci PM, Reverter JC, Cachia P, Pasi KJ, Layton DM, Cooper DN. Molecular analysis of the genotypephenotype relationship in factor X deficiency. Hum Genet 2000; 106: 249-57.
  • 19 Bernardi F, Castaman G, Redaelli R, Pinotti M, Lunghi B, Rodeghiero F, Marchetti G. Topologically equivalent mutations causing dysfunctional coagulation factors VII (294Ala→Val) and X (334Ser→Pro). Hum Mol Genet 1994; 03: 1175-7.
  • 20 Bernardi F, Castaman G, Pinotti M, Ferraresi P, Di Iasio MG, Lunghi B, Rodeghiero F, Marchetti G. Mutation pattern in clinically asymptomatic coagulation factor VII deficiency. Hum Mutat 1996; 08: 108-15.
  • 21 Millar DS, Kemball-Cook G, McVey JH, Tuddenham EGD, Mumford AD, Attock GB, Reverter JC, Lanir N, Parapia LA, Reynaud J, Meili E, von Felton A, Martinowitz U, Prangnell DR, Krawczak M, Cooper DN. Molecular analysis of the genotype-phenotype relationship in factor VII deficiency. Hum Genet 2000; 107: 327-42.
  • 22 Watzke HH, Lechner K, Roberts HR, Reddy SV, Welsch DJ, Friedman P, Mahr G, Jagadeeswaran P, Monroe DM, High KA. Molecular defect (Gla+14Lys) and its functional consequences in a hereditary factor X deficiency (Factor X “Voralberg”). J Biol Chem 1990; 265: 11982-9.
  • 23 Racchi M, Watzke HH, High KA, Lively MO. Human coagulation factor X deficiency caused by a mutant signal peptide that blocks cleavage by signal peptidase but not targeting and translocation to the endoplasmic reticulum. J Biol Chem 1993; 268: 5735-40.
  • 24 Bezeaud A, Miyata T, Helley D, Zeng YZ, Kato H, Aillaud MF, Juhan-Vague I, Guillin MC. Functional consequence of the Ser334→Pro mutation in a human factor X variant. Eur J Biochem 1995; 234: 140-7.
  • 25 Rudolph AE, Mullane MP, Porche-Sorbet R, Tsuda S, Miletich JP. Factor X St Louis II. Identification of a glycine substitution at residue 7 and characterization of the recombinant protein. J Biol Chem 1996; 271: 28601-6.
  • 26 Kim DJ, Girolami A, James HL. Characterization of recombinant human coagulation factor X Friuli. Thromb Haemost 1996; 75: 313-7.
  • 27 Nobauer-Huhmann IM, Holler W, Krinninger B, Turecek PL, Richter G, Scharrer I, Forberg E, Watzke HH. Factor X Frankfurt I: molecular and functional characterization of a hereditary factor X deficiency (Gla+25 to Lys). Blood Coagul Fibrinolysis 1998; 09: 143-52.
  • 28 Forberg E, Huhmann I, Jimenez-Boj E, Watzke HH. The impact of Glu102Lys on the factor X function in a patient with a doubly homozygous factor X deficiency (Gla14Lys and Glu102Lys). Thromb Haemost 2000; 83: 234-8.
  • 29 Iijima K, Murakami M, Kimura O, Murakami F, Shimomura T, Ikawa S. A dysfunctional factor X (factor X Kurayoshi) with a substitution of Arg139 for Ser at the carboxyl-terminus of the light chain. Thromb Res 2000; 101: 311-6.
  • 30 Simioni P, Vianello F, Kalafatis M, Barzon L, Ladogana S, Paolucci P, Carotenuto M, Dal Bello F, Palu G, Girolami A. A dysfunctional factor X (factor X San Giovanni Rotondo) present at homozygous and double heterozygous level: identification of a novel microdeletion (delC556) and missense mutation (Lys408Asn) in the factor X gene A study of an Italian family. Thromb Res 2001; 101: 219-30.
  • 31 Larson PJ, Camire RM, Wong D, Fasano NC, Monroe DM, Tracy PB, High KA. Structure/function analyses of recombinant variants of human factor Xa: factor Xa incorporation into prothrombinase on the thrombin-activated platelet surface is not mimicked by synthetic phospholipid vesicles. Biochemistry 1998; 37: 5029-38.
  • 32 Marchetti G, Castaman G, Pinotti M, Lunghi B, Ruggieri M, Rodeghiero F, Bernardi F. Molecular bases of CRM+ factor X deficiency: a frequent mutation (Ser334Pro) in the catalytic domain and a substitution (Glu102Lys) in the II EGF-like domain. Br J Haematol 1995; 90: 910-5.
  • 33 Leytus SP, Foster DC, Kurachi K, Davie EW. Gene for human factor X: a blood coagulation factor whose gene organization is essentially identical with that of factor IX and Protein C. Biochemistry 1986; 25: 5098-102.
  • 34 Pinotti M, Toso R, Redaelli R, Berrettini M, Marchetti G, Bernardi F. Molecular mechanisms of FVII deficiency: expression of mutations clustered in the IVS7 donor splice site of factor VII gene. Blood 1998; 92: 1646-51.
  • 35 Rosing J, Bakker HM, Thomassen MCLGD, Hemker HC, Tans G. Characterization of two forms of human factor Va with different cofactor activities. J Biol Chem 1993; 268: 21130-6.
  • 36 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-85.
  • 37 Kim DJ, Thompson AR, James HL. Factor X Ketchikan: a variant molecule in which Gly replaces a Gla residue at position 14 in the light chain. Hum Genet 1995; 95: 212-4.
  • 38 Wu W, Bancroft JD, Suttie JW. Differential effects of warfarin on the intracellular processing of vitamin K-dependent proteins. Thromb Haemost 1996; 76: 46-52.
  • 39 Hedner U. Recombinant activated factor VII as a universal haemostatic agent. Blood Coag Fibrinolysis 1998; 09 (suppl) S147-S152.
  • 40 Santagostino E, Morfini M, Rocino A, Baudo F, Scaraggi FA, Gringeri A. Relationship between factor VII activity and clinical efficacy of recombinant FVIIa given by continuous infusion to patients with factor VIII inhibitors. Thromb Haemost 2001; 86: 954-8.
  • 41 Mertens K, Bertina RM. Pathway in the activation of human coagulation factor X. Biochem J 1980; 185: 647-58.
  • 42 Mizuno H, Fujimoto Z, Atoda H, Morita T. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc Natl Acad Sci USA 2001; 98: 7230-4.
  • 43 Soriano-Garcia M, Padmanabhan K, de Vos AM, Tulinsky A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 1992; 31: 2554-66.
  • 44 Banner DW, D’Arcy A, Chene C, Winkler FK, Guha A, Konigsberg WH, Nemerson Y, Kirchhofer D. The crystal structure of the complex of blood coagulation factor VIIa with soluble tissue factor. Nature 1996; 380: 41-6.
  • 45 Zhong D, Bajaj MS, Schmidt AE, Bajaj SP. The N-terminal EGF-like domain in factor IX and factor X represents an important recognition motif for binding to tissue factor. J Biol Chem 2002; 277: 3622-31.