RSS-Feed abonnieren
DOI: 10.1055/s-0037-1613468
Anticoagulant serine fibrinogenases from Vipera lebetinavenom: structure-function relationships
Publikationsverlauf
Received
05. Dezember 2002
Accepted after revision
14. Februar 2003
Publikationsdatum:
09. Dezember 2017 (online)
Summary
Amino acid sequences of two anticoagulant serine fibrinogenases – α- and β-fibrinogenase (VLAF and VLBF) from Vipera lebetina venom have been deduced from the cDNA sequences encoding the enzymes. The mature protein sequences of 234 amino acids (VLAF) and 233 amino acids (VLBF) exhibit significant similarity with other snake venom serine proteinases. Both enzymes contain the catalytic triad His57, Asp102, Ser195, and twelve conserved cysteines forming six disulfide bridges. Unlike typical trypsin-like serine proteinases, they lack the third aspartate, Asp189 which is replaced by Gly189. VLBF is a typical representative of arginine esterases – β-fibrinogenases. α-Fibrinogenase, VLAF, is unique among snake venom serine proteinases with homologous structure. Until now there is no evidence of the anticoagulant serine enzymes degrading fibrinogen α-chain only and lacking esterolytic activity.
Parts of this paper were presented at the 17th International Fibrinogen Workshop of the International Fibrinogen Research Society (IFRS) held in Munich, Germany, September, 2002.
The sequence data of Vipera lebetina mRNA for α- and β-fibrinogenase have been deposited in the GenBank database under accession numbers AF528193 (VLAF) and AF536235 (VLBF).
-
References
- 1 Matsui T, Fujimura Y, Titani K.. Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 2000; 1477: 146-56.
- 2 Markland Jr FS. Snake venom fibrinogenolytic and fibrinolytic enzymes: An updated inventory. Thromb Haemost 1998; 79: 668-74.
- 3 Siigur E, Samel M, Tõnismägi K, Subbi J, Reintamm T, Siigur J.. Isolation, properties and N-terminal amino acid sequence of a factor V activator from Vipera lebetina (Levantine viper) snake venom. Biochim Biophys Acta 1998; 1429: 239-48.
- 4 Siigur E, Aaspõllu A, Siigur J.. Molecular cloning and sequence analysis of a cDNA for factor V activating enzyme, a coagulant protein from Vipera lebetina snake venom. Biochem Biophys Res Commun 1999; 262: 328-32.
- 5 Siigur E, Mähar A, Siigur J.. β-Fibrinogenase from the venom of Vipera lebetina. Toxicon 1991; 29: 107-18.
- 6 Siigur EP, Siigur JR, Aaviksaar AA, Kibirev VK, Fedoryak DM.. Separation of a bradykinin-releasing enzyme from the proteolytic complex of Levantine viper venom. Biokhimiya 1982; 47: 1730-7.
- 7 Mähar A, Siigur E, Siigur J.. Purification and properties of a proteinase from Vipera lebetina (snake) venom. Biochim Biophys Acta 1987; 925: 272-81.
- 8 Samel M, Subbi J, Siigur J, Siigur E.. Biochemical characterization of fibrinogenolytic serine proteinases from Vipera lebetina snake venom. Toxicon 2002; 40: 51-4.
- 9 Siigur E, Aaspõllu A, Tu AT, Siigur J.. cDNA cloning and deduced amino acid sequence of fibrinolytic enzyme (Lebetase) from Vipera lebetina snake venom. Biochem Biophys Res Commun 1996; 224: 229-36.
- 10 Altschul SF, Madden TL, Schäffer AA.. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res 1997; 25: 3389-402.
- 11 Deshimaru M, Ogawa T, Nakashima K.. et al. Accelerated evolution of crotalinae snake venom gland serine proteases. FEBS Lett 1996; 397: 83-8.
- 12 Hahn B-S, Boek K, Kim W-S, Lee C-S, Chang J-M, Kim YS.. Molecular cloning of capillary permeability-increasing enzyme-2 from Agkistrodon caliginosus (Korean viper). Toxicon 1998; 36: 1887-93.
- 13 Lee J-W, Park W.. cDNA cloning of brevinase, a heterogeneous two-chain fibrinolytic enzyme from Agkistrodon blomhoffii brevicaudus snake venom, by serial hybridizationpolymerase chain reaction. Arch Biochem Biophys 2000; 377: 234-40.
- 14 Serrano SMT, Hagiwara J, Murayama N.. et al. Purification and characterization of a kinin-releasing and fibrinogen-clotting serine proteinase (KN-BJ) from the venom of Bothrops jararaca, and molecular cloning and sequence analysis of its cDNA. Eur J Biochem 1998; 251: 845-53.
- 15 McMullen BA, Fujikawa K, Kisiel W.. Primary structure of a protein C activator from Agkistrodon contortrix contortrix venom. Biochemistry 1989; 28: 674-9.
- 16 Hung C-C, Huang K-F, Chiou S-H.. Characterization of one novel venom protease with β-fibrinogenase activity from the Taiwan habu (Trimeresurus mucrosquamatus): purification and c DNA sequence analysis. Biochem Biophys Res Commun 1994; 205: 1707-15.
- 17 Nishida S, Fujimura Y, Miura S, Ozaki Y.. et al. Purification and characterization of bothrombin, a fibrinogen-clotting serine protease from the venom of Bothrops jararaca. Biochemistry 1994; 33: 1843-9.
- 18 Wang D, Bode W, Huber R.. Bovine chymotrypsinogen A. X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol 1985; 185: 595-624.
- 19 Barrett AJ, Rawlings ND.. Families and clans of serine peptidases. Arch Biochem Biophys 1995; 318: 247-50.
- 20 Krem MM, Di Cera E.. Molecular markers of serine protease evolution. EMBO J 2001; 20: 3036-45.
- 21 Itoh N, Tanaka N, Funakoshi I, Kawasaki T, Mihashi S, Yamashina I.. Organization of the gene for batroxobin, a thrombin-like snake venom enzyme. J Biol Chem 1988; 263: 7628-31.
- 22 Wang Y-M, Wang S-R, Tsai I-H.. Serine pro-tease isoforms of Deinagkistrodon acutus venom: cloning, sequencing and phylogenetic analysis. Biochem J 2001; 354: 161-8.
- 23 Janin J, Chothia C.. Stability and specificity of protein-protein interactions: The case of the trypsin-trypsin inhibitor complexes. J Mol Biol 1976; 100: 197-211.
- 24 Czapinska H, Otlewski J.. Structural and energetic determinants of the S1-site specificity in serine proteases. Eur J Biochem 1999; 260: 571-95.