Thromb Haemost 2000; 84(02): 188-194
DOI: 10.1055/s-0037-1613995
Review Article
Schattauer GmbH

Type 2M vWD Resulting from a Lysine Deletion within a Four Lysine Residue Repeat in the A1 Loop of von Willebrand Factor

L. Hilbert
1   From CRTS and LFB, Lille, France
,
P. V. Jenkins
2   Haemophilia Centre, Department of Haematology, Royal Free Hospital and School of Medicine, London, UK
,
C. Gaucher
1   From CRTS and LFB, Lille, France
,
E. Meriane
3   CTS-CHU, Alger, Algeria
,
P. W. Collins
2   Haemophilia Centre, Department of Haematology, Royal Free Hospital and School of Medicine, London, UK
,
K. J. Pasi
2   Haemophilia Centre, Department of Haematology, Royal Free Hospital and School of Medicine, London, UK
,
C. Mazurier
1   From CRTS and LFB, Lille, France
› Author Affiliations
We thank Dr A.S. Ribba (U143, Le Kremlin Bicêtre, France) for the binding assays of radiolabelled botrocetin to rvWF and S. Belmont, V. Duretz, D. Hoguet for excellent technical assistance.
Further Information

Publication History

Received 19 October 1999

Accepted after resubmission 22 March 2000

Publication Date:
14 December 2017 (online)

Summary

Type 1 von Willebrand disease is characterized by a decreased plasma concentration of functionally normal von Willebrand factor (vWF) whereas type 2M is characterised by an abnormal vWF displaying decreased affinity for platelets. In these two types of patients, the multimeric structure of vWF is normal.

We report here the identification, in two unrelated families from the UK and Algeria, of an in-frame 3 bp deletion, at the heterozygous state, resulting in the deletion of a lysine residue within a four lysine repeat at position 642-645 of the mature vWF subunit (del K1405-1408 in prepro vWF). The patients who have a discrepancy between vWF antigen level and vWF ristocetin cofactor activity exhibited decreased ristocetin-induced binding but only a slight decrease in the percentage of high molecular weight (HMW) multimers in plasma.

Recombinant vWF harbouring this deletion did not bind to platelet GPIb in the presence of ristocetin or botrocetin although the protein is multimerized. Consequently, this lysine deletion was considered as a type 2M vWD mutation.

 
  • References

  • 1 Meyer D, Girma JP. Von Willebrand factor: Structure and function. Thromb Haemost 1993; 70: 99-104.
  • 2 Wagner DD, Marder VJ. Biosynthesis of von Willebrand protein by endothelial cells; processing steps and their intracellular localization. J Cell Biol 1984; 99: 2123-30.
  • 3 Fujimura Y, Titani K, Holland LZ, Russell R, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS. Von Willebrand factor: A reduced and alkylated 52/48 kDa fragment beginning at amino residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 1986; 26: 381-5.
  • 4 Scott JP, Montgomery RR, Retzinger GS. Dimeric ristocetin flocculates proteins, binds to platelets, and mediates von Willebrand factor dependent agglutination of platelets. J Biol Chem 1991; 266: 8149-55.
  • 5 Andrews RK, Booth WJ, Gorman JJ, Castaldi PA, Berndt MC. Purification of botrocetin from Bothrops jararaca venom. Analysis of botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib/IX complex. Biochem 1989; 28: 8317-25.
  • 6 Sugimoto M, Mohri H, Mc RAClintock, Ruggeri ZM. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. J Biol Chem 1991; 266: 18172-8.
  • 7 Mohri H, Fujimura Y, Shima M, Yoshioka A, Houghten RA, Ruggeri ZM, Zimmerman TS. Structure of the von Willebrand factor domain interacting with glycoprotein Ib. J Biol Chem 1988; 263: 17901-4.
  • 8 Sadler JE. A revised classification of von Willebrand disease. Thromb Haemost 1994; 71: 520-5.
  • 9 Meyer D, Fressinaud E, Gaucher C, Lavergne JM, Hilbert L, Ribba AS, Jorieux S, Mazurier C. and the INSERM Network on molecular abnormalities in von Willebrand disease. Gene defects in 150 unrelated french cases with type 2 von Willebrand disease: from the patient to the gene. Thromb Haemost 1997; 78: 451-6.
  • 10 Hilbert L, Gaucher C, Fressinaud E, Meyer D, Mazurier C. and the INSERM Network on molecular abnormalities in von Willebrand disease. A new type 2 M (»type B«) vWD mutation (G1324A) also at position 561 of the mature vWF subunit. Thromb Haemost 1997; Abst 2670: 54.
  • 11 Rabinowitz I, Tuley EA, Mancuso DJ, Randi AM, Firkin BG, Howard MA, Sadler JE. Von Willebrand disease type B: A missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoprotein Ib. Proc Natl Acad Sci USA 1992; 89: 9846-9.
  • 12 Hillery CA, Mancuso DJ, Sadler JE, Ponder JW, Jozwiak MA, Christopherson PA, Gill JC, Scott JP, Montgomery RR. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin but not botrocetin-mediated binding of von Willebrand factor to platelets. Blood 1998; 91: 1572-81.
  • 13 Mancuso DJ, Kroner PA, Christopherson PA, Vokac EA, Gil JC, Montgomery RR. Type 2M:Milwaukee-1 von Willebrand disease: an in-frame deletion in the Cys509-Cys695 loop of von Willebrand factor A1 domain causes deficient binding of von Willebrand factor to platelets. Blood 1996; 88: 2559-68.
  • 14 Hilbert L, Gaucher C, de Romeuf C, Horellou MH, Vink T, Mazurier C. Leu697 → Val mutation in mature von Willebrand factor is responsible for type IIB von Willebrand disease. Blood 1994; 83: 1542-50.
  • 15 Miller SA. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215-8.
  • 16 Naylor JA, Green PM, Montandon A, Rizza CR, Gianelli F. Detection of three novel mutations in two haemophilia A patients by rapid screening of whole essential region of factor VIII gene. Lancet 1991; 337: 635-9.
  • 17 Hilbert L, Gaucher C, Mazurier C. Identification of two mutations (Arg611Cys and Arg611His) in the A1 loop of von Willebrand factor (vWF) responsible for type 2 von Willebrand disease with decreased platelet-dependent function of vWF. Blood 1995; 86: 1010-8.
  • 18 Mazurier C, Parquet-Gernez A, Goudemand M. Dosage de l’antigène lié au FVIII par la technique ELISA. Intérêt dans l’étude de la maladie de Willebrand. Pathol Bio (Paris) 1977; 25: 18.
  • 19 Mazurier C, Samor B, Goudemand M. Improved characterization of plasma von Willebrand factor heterogeneity when using 2.5% agarose gel electrophoresis. Thromb Haemost 1986; 55: 61-4.
  • 20 Jorieux S, Gaucher C, Piétu G, Chérel G, Meyer D, Mazurier C. Fine epitope mapping of monoclonal antibodies to the NH2-terminal part of von Willebrand factor (vWF) by using recombinant and synthetic peptides: interest for the localization of the FVIII binding domain. Br J Haematol 1994; 87: 113-8.
  • 21 Matsushita T, Sadler JE. Identification of amino acid residues essential for von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem 1995; 270: 13406-14.
  • 22 Jenkins PV, Ononye C, Collins PW, Pasi KJ, Dormandy K. Dominant type 1 von Willebrand’s disease as a result of a deletion of a single codon in exon 28 of the vWF gene. Br J Haematol 1996; 93 Abst 1176: 311.
  • 23 Gaucher C, Hilbert L, Meriane F, Mazurier C, Pernod G. Type 2 von Willebrand disease resulting from an insertion or deletion in the 509-695 disulphide loop of von Willebrand factor. Thromb Haemost 1995; 73 Abst 1026: 1168.
  • 24 Nitu-Whalley IC, Lee CA, Owens D, Diddell A, Pasi KJ, Jenkins PV. A survey of previously diagnosed type 1 von Willebrand disease identifies a subgroup of patients with type 2M von Willebrand disease. Thromb Haemost 1999; 82 Abst 1604: 510.
  • 25 Favaloro EJ, Smith J, Petinos P, Hertberg M, Koutts J. On behalf of the RCPA Quality Assurance Program (QAP) in Haematology Haemostasis Scientific Advisory panel. Thromb Haemost 1999; 82: 1276-82.
  • 26 Sugimoto M, Mohri H, Mc RAClintock, Ruggeri ZM. Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. A model for the regulation of von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem 1991; 266: 18172-8.
  • 27 Kroner PA, Frey AB. Analysis of the structure and function of the von Willebrand factor A1 domain using targeted deletions and alanine-scanning mutagenesis. Biochem 1996; 35: 13460-8.
  • 28 Ribba AS, Cherel G, Obert B, Girma JP, Meyer D. Both lysines 643 and 644 in the A1 loop of von Willebrand factor are necessary for the interaction with glycoprotein Ib. Thromb Haemost 1997; Abst PD 1494: 365.
  • 29 Emsley J, Cruz M, Handin R, Liddington R. Crystal structure of the von Willebrand factor A1 domain and implications for the binding of platelet glycoprotein Ib. J Biol Chem 1998; 273: 10396-401.
  • 30 Jenkins PV, Pasi KJ, Perkins SJ. Molecular modeling of ligand and mutation sites of the type A domains of human von Willebrand factor and their relevance to von Willebrand’s disease. Blood 1998; 91: 2032-44.
  • 31 Celikel R, Varughese KI, Madhusudan Shima M, Yoshioka A, Ware J, Ruggeri ZM. Crystal structure of the von Willebrand factor A1 domain in complex with the function blocking NMC-4 Fab. Nature Structural Biology 1998; 05: 189-94.