Thromb Haemost 2000; 84(04): 680-688
DOI: 10.1055/s-0037-1614087
Review Article
Schattauer GmbH

Cerivastatin, an Inhibitor of HMG-CoA Reductase, Inhibits Urokinase/Urokinase-receptor Expression and MMP-9 Secretion by Peripheral Blood Monocytes

A Possible Protective Mechanism against Atherothrombosis
Florence Ganné
1   From Laboratoire DIFEMA, Groupe de Recherches MERCI, Faculté de Médecine et de Pharmacie, Rouen, France
,
Marc Vasse
1   From Laboratoire DIFEMA, Groupe de Recherches MERCI, Faculté de Médecine et de Pharmacie, Rouen, France
,
Jean-Louis Beaudeux
2   Laboratoire de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
,
Jacqueline Peynet
2   Laboratoire de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
,
Arnaud François
3   Service d’Anatomie et Cytologie Pathologiques, Hôpital C. Nicolle, Rouen, France
,
Zohar Mishal
4   Service de Cytométrie en Flux, CNRS, Villejuif, France
,
Antoine Chartier
5   Bayer Pharma, Puteaux, France
,
Gérard Tobelem
6   Service d’Hématologie, Hôpital Lariboisière, Paris, France
,
Jean-Pierre Vannier
1   From Laboratoire DIFEMA, Groupe de Recherches MERCI, Faculté de Médecine et de Pharmacie, Rouen, France
,
Jeannette Soria
7   Laboratoires de Biochimie et Ste Marie, Hôtel-Dieu, Paris, France
,
Claudine Soria
1   From Laboratoire DIFEMA, Groupe de Recherches MERCI, Faculté de Médecine et de Pharmacie, Rouen, France
2   Laboratoire de Biochimie, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
3   Service d’Anatomie et Cytologie Pathologiques, Hôpital C. Nicolle, Rouen, France
4   Service de Cytométrie en Flux, CNRS, Villejuif, France
5   Bayer Pharma, Puteaux, France
6   Service d’Hématologie, Hôpital Lariboisière, Paris, France
7   Laboratoires de Biochimie et Ste Marie, Hôtel-Dieu, Paris, France
8   Inserm U353, Hôpital St Louis, Paris, France
› Author Affiliations
The authors thank Zohar Mishal for confocal microscopy analysis, Elisabeth Legrand and Damien Genty for their excellent technical assistance, Jean-Philippe Collet for helpful discussions, and Richard Medeiros for his advice in editing the manuscript.
Further Information

Publication History

Received 08 June 1999

Accepted after resubmission 04 May 2000

Publication Date:
11 December 2017 (online)

Summary

It is now recognised that acute myocardial infarction results from the rupture of atherosclerotic plaques. Lymphocytes and macrophages, which infiltrate rupture sites, contribute to plaque degradation by expressing urokinase (u-PA) bound to cell membrane by urokinase receptor (u-PAR) and by secreting metalloproteinase MMP-9.

We have previously demonstrated that the uptake of oxidised LDL (ox-LDL) by monocytes induces an increase of u-PA and u-PAR expression. The present study shows that the expression of u-PA and u-PAR induced by ox-LDL on monocyte surface is suppressed by cerivastatin (a synthetic inhibitor of HMG-CoA reductase, Bayer) from 2 nM. This leads to reduced plasmin generation and monocyte adhesion to vitronectin. Furthermore, higher concentrations of cerivastatin (50-100 nM) reduce the expression of u-PA and u-PAR on unstimulated monocytes. It also inhibits MMP-9 secretion but has no effect on TIMP-1 secretion, suggesting that the decrease in MMP-9 has a real protective effect on plaque stabilisation. The inhibitory effect of cerivastatin on u-PA expression and MMP-9 secretion can be explained by the inhibition of NF-kappa B translocation into the nucleus, as shown by immunofluorescence. As farnesyl-pyrophosphate reverses the effect of cerivastatin, it is postulated that these effects could also be due to the inhibition of Ras prenylation. This was confirmed by confocal microscopy, which shows the Ras delocalisation from the monocyte membrane. The cerivastatin-induced effects on monocyte functions could explain, at least in part, the protective effect of this drug against atherothrombotic events.

 
  • References

  • 1 Castelli WB, Garrisson RJ, Wilson PWF, Abbott RD, Kaloudsian S, Kannel WB. The incidence of coronary heart disease and lipoprotein cholesterol levels: the Framingham study. JAMA 1986; 256: 2835-8.
  • 2 Grundy SM. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 1988; 319: 24-33.
  • 3 Vaughan CJ, Murphy MB, Buckley BM. Statins do more that just lower cholesterol. Lancet 1996; 348: 1079-82.
  • 4 Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657-71.
  • 5 Lee RT, Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol 1997; 17: 1859-67.
  • 6 Davies MJ, Thomas AC. Plaque fissuring. The cause of acute myocardial infarction, sudden ischemic death and crescendo angina. Br Heart J 1985; 53: 1859-67.
  • 7 Fernandez-Ortiz A, Badimon J, Falk E, Fuster V, Meyer B, Mailhac A, Weng D, Shah PK, Badimon L. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. Am J Coll Cardiol 1994; 23: 1562-9.
  • 8 Okada Y, Gonoji Y, Naka K, Tomita K, Nakanishi I, Iwata K, Yamashita K, Hayakawa T. Matrix metalloproteinase 9 (92-kDa gelatinase/type IV collagenase) from HT 1080 human fibrosarcoma cells. Purification and activation of the precursor and enzymatic properties. J Biol Chem 1992; 267: 21712-9.
  • 9 Mazzieri R, Masiero L, Zanetta L, Monea S, Onisto M, Garbisa S, Mignatti P. Control of type IV collagenase activity by components of the urokinaseplasmin system: a regulatory mechanism with cell-bound reactants. EMBO J 1997; 16: 2319-32.
  • 10 Lee SW, Ellis V, Dichek DA. Characterisation of plasminogen activation by glycophosphatidylinositol-anchored urokinase. J Biol Chem 1994; 269: 2411-8.
  • 11 Carmeliet P, Moons L, Lijnen R, Base M, Lemaître V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F, Collen D. Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nature Genetics 1997; 17: 439-44.
  • 12 Kienast J, Padro T, Steins M, Li CX, Schmid KW, Hammel D, Scheld HH, van de Loo JC. Relation of urokinase-type plasminogen activator expression to presence and severity of atherosclerotic lesions in human coronary arteries. Thromb Haemost 1998; 79: 579-86.
  • 13 Ganné F, Vasse M, Beaudeux JL, Peynet J, François A, Paysant J, Lenormand B, Collet JP, Vannier JP, Soria J, Soria C. Increased expression of u-PA and u-PAR on monocytes by LDL and Lp(a) lipoproteins. Consequences for plasmin generation and monocyte adhesion. Thromb Haemost 1999; 81: 594-600.
  • 14 Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 1994; 269: 32380-8.
  • 15 Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69: 377-81.
  • 16 Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76: 333-7.
  • 17 Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndrome: implications for plaque rupture. Circulation 1994; 90: 775-8.
  • 18 Irigoyen JP, Besser D, Nagamine Y. Cytosqueleton reorganization induces the urokinase-type plasminogen activator gene via the Ras/extracellular signal-regulated kinase (ERK) signaling pathway. J Biol Chem 1997; 272: 1904-9.
  • 19 Allgayer H, Wang H, Shirasawa S, Sasazuki T, Boyd D. Targeted disruption of the K-ras oncogene in an invasive colon cancer cell line down-regulates urokinase receptor expression and plasminogen-dependent proteolysis. Br J Cancer 1999; 80: 1884-91.
  • 20 Lougheed M, Moore ED, Scriven DR, Steinbrecher UP. Uptake of oxidised LDL by macrophages differs from that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment. Arterioscler Thromb Vasc Biol 1999; 19: 1881-90.
  • 21 Todd III RF, Barnathan ES, Bohuslav J, Chapman HA, Cohen RL, Felez J, Howell A, Johnson JG, Knapp W, Kramer M, Miles LA, Nykjaer A, Ralfkiaer E, Schuren E. Leukocyte Typing V: White Cells Differentiation Antigens. In: CD87 cluster workshop report. Schlossman S, Boumsell L, Gilks W. eds Oxford University Press; New York: 1995: 932-7.
  • 22 Desrivières S, Lu H, Peyri N, Soria C, Legrand Y, Menashi S. Activation of the 92 kDa type IV collagenase by tissue kallikrein. J Cell Physiol 1993; 157: 587-93.
  • 23 Bellosta S, Via D, Canavesi M, Pfister P, Fumagalli R, Paoletti R, Bernini F. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler Thromb Vasc Biol 1998; 18: 1671-8.
  • 24 Bernini F, Scurati N, Bonfadini G, Fumagalli R. HMG-CoA reductase inhibitors reduce acetyl LDL endocytosis in mouse peritoneal macrophages. Arterioscler Thromb Vasc Biol 1995; 15: 1352-8.
  • 25 Reuning U, Wilhelm O, Nishiguchi T, Guerrini L, Blasi F, Graeff H, Schmitt M. Inhibition of NF-kappa B-Rel A expression by antisense oligodeoxynucleotides suppresses synthesis of urokinase-type plasminogen activator (uPA) but not its inhibitor PAI-1. Nucleic Acids Res 1995; 23: 3887-93.
  • 26 Wang W, Abbruzzese JL, Evans DB, Chiao PJ. Overexpression of urokinasetype plasminogen activator in pancreatic adenocarcinoma is regulated by constituvely activated RelA. Oncogene 1999; 18: 4554-63.
  • 27 Sato H, Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 1993; 08: 395-405.
  • 28 Bond M, Fabunmi RP, Baker AH, Newby AC. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 1998; 435: 29-34.
  • 29 Palombella VJ, Rando OJ, Goldberg AL, Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 1994; 78: 773-85.
  • 30 Colli S, Eligini S, Lalli M, Camera M, Paoletti R, Tremoli E. Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherosclerosis. Arterioscler Thromb Vasc Biol 1997; 17: 265-72.
  • 31 Folgueira L, Algeiras A, MacMorran WS, Bren GD, Paya CV. The Ras-Raf pathway is activated in human immunodeficiency virus-infected monocytes and participates in the activation of NF-kappa B. J Virol 1996; 70: 2332-8.
  • 32 Norris JL, Baldwin Jr AS. Oncogenic Ras enhances NF-kappaB transcriptional activity through Raf-dependent and Raf-independent mitogen-activated protein kinase signaling pathways. J Biol Chem 1999; 274: 13841-6.